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Fall 2017
MID-TERM EXAM — SOLUTIONS

1. QUESTIONS: Answer each of the following questions:
(a) What is the translation lookaside buffer?

(b) What disadvantage to FAT-based file systems is addressed by inode-based
file systems? How does the latter fix the problem?

(¢) Why do garbage collectors exhibit poor spatial and temporal locality? What
effect does this poor locality have on the memory hierarchy?

(a) The TLB is a small, high-speed hardware cache for page table entries. It
is used by the MMU to quickly translation virtual addresses to physical
ones.

(b) When using a FAT, the seek operation must perform a linear search (O(n),
where n is the number of blocks in the file) through the linked list of blocks
to find the correct one. The inode structure, by organizing the sequence
of blocks for each file into a tree, makes it possible to map a specific seek
location to a path in the tree to a specific block. Thus, the time to perform
the seek is O(1).!

(¢) A GC must visit every live object on the heap. When visiting each object,
either to copy or mark it, the GC then follows outgoing pointers from that
object as quickly as possible. Those pointers may lead anywhere in the
heap. Thus, when the GC is running, there is poor sptial locality because
the GC follows all available pointers, taking it away from the current region
of the address space; and, there is poor temporal locality, since objects are
not referenced repeatedly, but quickly used as jump-off points to other
objects.

The effect on the memory hierarchy is to pollute the hardware caches,
filling them with data unlikely to be used soon by the program, and thus
rendering them ineffective.

LOK, one could argue that the time is really not O(1) because, as n grows, the depth of the tree—the
number of levels of indirection—grows. Whatever function describes this growth, it’s very, very
slow. Since real inode implementations must ultimately fix the maximum depth (e.g., quad-indirect
blocks), then there is a worst-case constant number of indirect levels to traverse.



2. QuEsTIONS: Consider a system that uses 64-bit addresses and a 64 KB page
size. To manage the virtual address spaces, assume a 4-level page table.

(a) How would a virtual address be divided into groups of bits to navigate this
page table?

(b) How much space would each allocated portion of this multi-level page table
require?

(a) The bits of the 64-bit address would be divided like so, where bit 0 is the
least significant, and bit 63 is the most significant of the address:

e [63-52]: The level 0 index, used to select an entry in the 0™-level
(top-level) page table of 22 = 4096 entries.
[51-40]: The level 1 index, used to select an entry into the 1%¢-level
page table.
[39-28]: The level 3 index, used to select an entry into the 2"¢-level
page table
[27-16]: The level 3 index, used to select a specific page-table entry
at the 3"%-level.

[15-0]: The offset into the 64 KB (2'¢ byte) page. There are not
used in traversing the page table.

(b) Because each of the four indices is 12 bits, each index chooses from 2!2
entries per level. Since each entry is itself a 64-bit (8-byte) pointer, then
each portion/block/chunk of the multi-level page table is 2% entries x
23 butes _ 915 pytes = 32 K B. In other words, each chunk requires half of

entry
a page.



3. QUEeSTION: Consider a 16-entry hardware cache that is 4-way set associative
(i.e., there are 4 entries in each set). In this cache, each entry stores a 32-byte
cache line (i.e., 4 words given 8 bytes/word).

How would this hardware cache would use the 64-bit address sought to find
the desired word and return it. (Assume that the address’s data is, in fact,
currently in the cache.)

The 64-bit address would be divided and used like so:

[63-7]: The 57-bit tag, to be matched against the tags stored in each
entry within the selected cache line.

e [6-5]: The 2-bit set selector. That is, the hash function that maps an
address to a set.

e [4-3]: The 2-bit word selector within a cache line. These bits index into
the cache line to select an 8-byte portion.

e [2-0]: The 3-bit byte selector within the given word. Whole words are
returned by the cache, so these bytes are used later by the processor, if
needed, to select a specific byte.?

2T did not expect you to know this detail about selecting bytes within words for only certain opera-
tions. I had no expectation that you would mention it.



4. QUESTION: How would you change our Project-1 memory allocator so that it
would coalesce free blocks? Describe/write/show changes in any data structures,
as well as alterations to use those structures by malloc() and free().

Assume a call to free(ptr), where ptr provides the base of the
programmer-usable block of heap memory. From this block, we must find
whether either or both of the adjacent blocks in the address space are free.
If so, this block must be coalesced with it/them. Given the original structure,
from ptr, we can determine the location of the following:

e At ptr - sizeof(size_t): The header, which contains the block’s size
(not including the header itself.

e At ptr + blocksize: The header of the next block in the address space,
which gives us the next block’s location and, from its header, its size.

While this information is useful, we would lack the following:
e The location of the previous block in the address space.
e Whether the next block is in use or free.
e Whether the previous block is in use or free.

In order to find this information, we augment each allocated block with a
footer—a reserved space, like the header, that appears immediately after the
programmer-usable portion of the allocated block.®> That footer contains a
pointer to the block’s header.

Additionally, we will change the encoding of the size in the header. Specifically,
because a single block can never take up more than half of the address space,
we can use the most significant bit as a flag to determine whether the block is
allocated (bit set to 1) or free (bit set to 0).

Thus, free() will be able to:

e Find the next block in the address space, as described above.

e Find the previous block in the address space, by calculating
footer = header - sizeof (voidx*), and following that footer’s pointer
to reach the previous block’s header.

e Determine whether the next block is free by examining the allocated/free
bit in the next block’s header.

e Determine whether the previous block is free by examining the allocated /free
bit in the previous block’s header.

3This approach is one of many possible solutions to finding the adjacent blocks. I present it as one
example, not as the definitive answer.



First, free() must clear the allocated/free bit in the current block’s header.

If free() can coalesce the current block with the next block, then it must find
the next block in the free list and remove it, add the next block’s size to the
current block’s size, update the next’s block’s footer to refer to the current
block, and then insert the current block into the free list.

If free() can coalesce the current block with the previous block, then it must
update its own footer to point to the previous block, and then add its size to the
previous block’s size. Notice that the current block has not yet been inserted
in the free list, and the previous block is already in it, so nothing needs to be
removed from that list.

The malloc() function needs only to create and assign the footer to each block
it creates (when pointer bumping), and to set the allocated/free bit on each
allocated block’s header.



