INTRODUCTION TO COMPUTER SCIENCE II
PROJECT 1
The Game of Life

1 A game that isn’t really a game

John Conway’s Game of Life is not really a game to be played. It is a cellular automaton, but
that doesn’t tell you much, either. It is an evolving environment—a grid of cells that live or die,
from one generation to the next, based on a simple set of rules. From these mindless, superficial
rules comes some startlingly complex behavior. For an extreme example of such behavior, watch
this little moviel (although you should do so with the sound off, because it’s goofy). We will
discuss what’s happening with these automata a bit in class. For now, our goal is to implement this
so-called game.

2 Getting started

If you are doing your work on remus/romulus, login with Remote Desktop, open a terminal
window, create a directory for your work, and change into it. Next, grab the initial source code for
this assignment:

e On remus/romulus: Copy the source code with the following command. ..

$ cp “sfkaplan/public/C0OSC-112/project-1/+*.java
$ cp “sfkaplan/public/COSC-112/project-1/*.init

e On your own computer: Download the source code by clicking here. Note that it is a zip
file, so you will need to extract its contents.

Examine the files you just copied. There’s a good bit there, and you should expect to spend
significant time simply grasping the relationship between the files. Here is a description of what’s
there:

e Life. java: This simple class contains the main () method that gets the program started.
It creates a Game object and then calls play () on that object to get the program moving.
You should not change this class.

e Game. java: A Game is the high-level director of this cellular simulation. It reads some
not-so-simple work of reading an initial grid file (see below) and creating the Grid of Cell
objects described therein. It then is responsible for evolving the cells for the number of
generations request by the user, displaying the grid at each through a UserInterface
object.

There are two methods in this class that you must write: the evolve () method; and,
the getPopulation () method. Both are described in their comments.

1


https://sfkaplan.people.amherst.edu/courses/2017/spring/COSC-112/
https://sfkaplan.people.amherst.edu/courses/2017/spring/COSC-112/assignments/project-1.pdf
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://www.youtube.com/watch?v=xP5-iIeKXE8
https://www.youtube.com/watch?v=xP5-iIeKXE8
https://sfkaplan.people.amherst.edu/courses/2017/spring/COSC-112/assignments/project-1/project-1.zip

e Grid. java: A Grid is a two-dimensional container of Cel1l objects. You should
not change this class.

e Cell. java: A Cell is either dead or alive. It additionally determines, based on the cells
around it—its neighborhood—whether it should live or die in the next generation.

There are three methods in this class that you must write: the countLiveNeighbors ()
method; the evolve () method; and, the advance () method. All three are described in
their comments.

e UserInterface. java: Provides the ability to print the current state of the game. You
should not change this class.

e Support. java: A handy utility method or two. You should not change this class.

e simple.init: A simple initial grid file. It contains pairs of integers such that the first line
provides the size of the grid, while all subsequent lines provide the coordinates of initially
live cells. Taken together, these form starting state of the game in generation O.

e X-pattern.init: Another initial grid file. It specifies a modestly larger grid with a
more interesting pattern of initially live cells.

3 Your assignment

Write the methods needed in the Game and Cel1l classes. You should initially debug your code
with the simple.init and X-pattern.init files, but you are encouraged to make more
complex initial grid files of your own.

4 How to submit your work

Use the CS submission systems| to submit your work. Specifically, you will need to submit your
Game. java and Cell. java files. Each time you submit, please submit both files together.
You may use either of the following two methods, while connected to remus or romulus, to use
the submission system:

e Web-based: Visit the submission system web page.

e Command-line based: Use the cssubmit command at your shell prompt, like so:
$ cssubmit Game.java Cell. java

This assignment is due on Sunday, Feb-26, 11:59 pm.


https://www.cs.amherst.edu/submit
https://www.cs.amherst.edu/submit

	A game that isn't really a game
	Getting started
	Your assignment
	How to submit your work

