
INTRODUCTION TO COMPUTER SCIENCE II
PROJECT 2

The Game of Life, version 2

1 More abstracting, more capabilities
In Project-1, you implemented a basic version of the Game of Life; in Lab-4, you abstracted the
Cell class to allow for different types of cells (Conway and Highlife).

Here, we’re going to use more abstraction, adding capabilities and flexility that the original code
didn’t have. There will be more cell types, a choice of grid types, and a choice of user interfaces.
Read on for details. . .

1.1 More cell types
Since you have already modified your code for multiple cell types, there are (at least) two more to
add:

1. ZombieCell: This type of cell is always dead. The grid’s getCell() method should be
modified to return one of these cells for out-of-bounds coordinates. That method should
no longer return null.

2. MyCell: Come up with your own rules. The rules are defined by the number of neighbors
for a cell to be born (that is, the cell is currently dead, but becomes alive), as well as the
number of neighbors for a cell to survive (that is, the cell is currently alive and stays that
way). Conway cells, for example, are born with 3 live neighbors, and survive with 2 or 3 live
neighbors; the shorthand B3/S23 is commonly used. Highlife cells use B36/S23. Experiment
with your own rule combinations to find one that does something interesting.

1.2 More grid types
Abstract the Grid class. Figure out which methods should become abstract—those methods that
depend on the specific manner in which the Cell pointers are stored. Then create the following
subclasses:

1. Array2DGrid: The old Grid class, but under a new, subclassed name and implementing
only the abstract methods of its superclass. It is a grid implemented using arrays of arrays.

2. Array1DGrid: Implement a grid, but use a single, one-dimensional array (of pointers to
Cell objects).

1

https://sfkaplan.people.amherst.edu/courses/2017/spring/COSC-112/
https://sfkaplan.people.amherst.edu/courses/2017/spring/COSC-112/assignments/project-2.pdf
https://sfkaplan.people.amherst.edu/courses/2017/spring/COSC-112/assignments/project-1.pdf
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://sfkaplan.people.amherst.edu/courses/2017/spring/COSC-112/assignments/lab-4.pdf

1.3 More user interface types
Abstract the UserInterface class. Again, figure out which methods should become abstract.
Here, those methods are would do work specific to presenting the state of the grid in a particu-
lar manner should be abstract. Then, create the following subclasses that provide different user
interfaces:

1. DumbTextUserInterface: The old UserInterface class, but under a new, sub-
classed name and implementing only the abstract methods of its superclass. It prints, as a
log, the sequence of generations in rapid succession.

2. SmartTextUserInterface: Like the DumbTextUserInterface, but uses Control
Sequence Introducer (CSI) codes to reprint the grid on top of itself. By printing CSI codes
to the terminal in which the program is running, the cursor can be made to move in arbitrary
directions, allowing the user interface to reset the cursor to the top of the grid output each
time.

For example, to make the cursor move up 5 lines, the following print statement would make
that happen:
System.out.print("\u001b[5A");

Here, \u001b[is a special escape sequence that tells the terminal that special codes are to
follow. (That sequence is the CSI defined on the above web page.) The 5A is the code to
direct the terminal to move the cursor up (A) by 5 lines (5).

3. GraphicUserInterface: A user interface that uses the Swing package (part of Java) to
create a graphical window and draw the generation in it. More details to follow soon.

1.4 Changes to getCell()
The Grid method getCell(i,j) should be altered to behave as follows:

• If (i, j) is within the grid, return the Cell contained at that location.

• If (i, j) is in the bounding frame—the set of cells one position outside of the proper
grid—then return a ZombieCell (described above).

• Otherwise, throw a OffTheGridException to indicate that (i, j) is outside of any
range that should ever be requested.

2

https://en.wikipedia.org/wiki/ANSI_escape_code#CSI_codes
https://en.wikipedia.org/wiki/ANSI_escape_code#CSI_codes

2 Getting started
Create a new directory for your Project-2 work. Copy, from your Lab-4 directory, all of your
.java and .init files. This previous work of yours is the starting point.

3 Your assignment
Write the classes described above. These new classes, as well as the new behavior of modified
methods, may require changes elsewhere in the code. You are expected to identify those locations
and make those changes. When done, a user should be able to run the program with their desired
cell type, grid type, and user interface.

4 How to submit your work
Submit all of your .java files. Do so via one of the following tools:

• Web-based: Visit the CS submission system web page.
• Command-line based: On remus/romulus, use the cssubmit command at your shell

prompt.

This assignment is due on Sunday, Mar-26, 11:59 pm.

3

https://www.cs.amherst.edu/submit

	More abstracting, more capabilities
	More cell types
	More grid types
	More user interface types
	Changes to getCell()

	Getting started
	Your assignment
	How to submit your work

