
NETWORKS

PROJECT 1
Data link error detection

For this project, you will handle some bit-inversion errors introduced during transmission. Specif-
ically, we will simulate communications across different media, some of which introduce different
types of error. Your task will be to write a data link layer that detects whether an error has
occurred.

1 Getting the simulator
This project will require you to extend the capabilities of a simple point-to-point network simula-
tor that is written in Java. The simulator code comes as a directory of Java code; you will need
to compile and run that code from a command-line shell, providing arguments to the simulator
as you run it. If you have appropriate tools (e.g., JDK, eclipse) on your computer, you’re wel-
come to do the work there; if you don’t have such tools, you may login to the college’s server,
vega.cs.amherst.edu to use the tools available there.1

To get started, create and change into a directory for this project, and download the simulator’s
source code:

$ mkdir -p networks/project-1
$ cd networks/project-1

Download the project’s source code:

$ wget -nv -i https://bit.ly/COSC-283-project-1-source

You will obtain a number of source code files that, together, simulate a partial network stack
(using only the layers we’ve covered so far); this stack is created for each of two hosts, connected
by some (simulated) medium. You will be modifying this program by adding new subclasses to
the DataLinkLayer class.

2 The parts of the simulator
The simulator provides two media (and I may add others, later):

1. PerfectMedium: Connect two hosts with no errors ever introduced. The user specifies
Perfect at the command line to use this medium.

2. LowNoiseMedium: Connect two hosts with infrequent, uniformly distributed bit inver-
sions. The user specifies LowNoise at the command line to use this medium.

1This server has a JDK for Java 7 installed, as well as emacs, eclipse, netbeans, and sublime-text, all of which you
may use on this code. If there are other tools you want to use on this server, let me know, and I can try to install them.

1

https://sfkaplan.people.amherst.edu/courses/2018/fall/COSC-283/
https://sfkaplan.people.amherst.edu/courses/2018/fall/COSC-283/assignments/project-1.pdf


A physical layer object connects directly to a medium. There is only one type of physical layer.
It accepts a sequence of bytes which it then sends, one bit at a time, across the medium. The
receiving physical layer reconstructs the bytes, one at a time, delivering each complete byte to its
data link layer.

Currently, there is one implemented data link layer:

• DumbDataLinkLayer: This particular data link layer uses start/stop tags and byte pack-
ing2 to frame any data that its network layer asks it to send. It creates a single frame for any
sequence of requested bytes, no matter the length, and most critically, it performs no error
management. To use this data link layer, the user specifies Dumb at the command line.

There is also a Host, of which there is only one type, that is the client of any data link layer. It
drives the data link layer to send or receive messages.

The whole thing is driven by the Simulator, which creates two (simulated) hosts and their
respective data link and physical layers, which it then connects to the (simulated) medium. It then
triggers one host to send a message to the other, printing the outcome.

3 Running the simulator
After obtaining the code, you should be able to compile and run it. The simulator reads a file
to determine what data to send, so you should create a text file with a small message in it. (For
example, create a file named message.txt, with that file containing some short message to send.)

Once you have a message file to be transmitted, you must specify, on the command line, which
Medium subclass and which DataLinkLayer subclass to use. You do so by providing the
leading portion of the name of the subclass on the command line. For example, if you want to use
the DumbDataLinkLayer with the PerfectMedium, you invoke the simulator like so:

$ java Simulator Perfect Dumb message.txt

The simulator will read the message file, pass it to one host to be sent, and then query the
receiving host for what it received. It will then print the received data. If you try using the
LowNoiseMedium to introduce some errors, you will see some characters get corrupted (and,
perhaps, see the whole frame broken by the corruption of the start or stop tags. error

4 Writing new data link layers
YOUR ASSIGNMENT: You must create two new data link layers that are subclasses of the abstract
DataLinkLayer class:

1. ParityDataLinkLayer: Use a single, simple parity bit to detect one-bit errors on each
frame.

2That is, byte-based escape codes for data that happens to match tag values.

2



2. CRCDataLinkLayer: Use the CRC checksum method to detect errors on each frame.3

For each of these implementations, when an error is detected, print an error message, show the
(incorrect) data, and do not provide the data to the receiving host.

Both of your layers must divide each message into smaller frames (unlike DumbDataLinkLayer).
Specifically, each frame should contain no more than 8 bytes of data each. Be sure to test your
code with longer messages to be sure that the data is being divided correctly.

How to add a new data link layer to the simulator: To add a new data link layer, simply copy
the source code of one of the existing data link layer subclasses (e.g., DumbDataLinkLayer.java)
into a new file of your own (say, ParityDataLinkLayer.java). Edit the file and rename the
class, and then change the methods so that it detects/corrects errors differently.

Note that you do not need to change Simulator.java or any of the other existing classes
for the simulator to recognize your new data link layer. You are welcome to look inside
Simulator.java, as well as the create()method in DataLinkLayer.java itself, which
uses the command line input to form the names of subclasses, and then applies reflection to create
objects of those classes. Thus, so long as your subclasses have the right kind of name (e.g., the
names of data link layer subclasses end with DataLinkLayer), then the existing code will use
them just as they do the provided classes.

5 How to submit your work
Submit your ParityDataLinkLayer.java and CRCDataLinkLayer.java source code
files using one of the two usual tools:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at the shell prompt on remus/romulus/vega.

This assignment is due on Wednesday, Sep-26, 11:59 pm.

3Consult the text to select a good generator polynomial to drive your CRC. I will be testing your code by introducing
a number of kinds of errors with media of my own making.

3

https://www.cs.amherst.edu/submit

	Getting the simulator
	The parts of the simulator
	Running the simulator
	Writing new data link layers
	How to submit your work

