
NETWORKS

PROJECT 2
Stop-and-wait flow control

This assignment is an extension of Project 1. Here, you will modify/extend your data layer
(you may use your ParityDataLinkLayer or your CRCDataLinkLayer), adding to it an
implementation of stop-and-wait flow control.

1 The simulator
Getting it: Although this project is an extension of the previous one, it does require adapting
your code to a slightly different code base. Later we will examine the changes from the previous
iteration, but first, get the new code:

$ mkdir -p networks/project-2
$ cd networks/project-2
$ wget -nv -i https://bit.ly/COSC-283-project-2-source

Copy one of your data link layers from Project 1, something like this:

$ cp ../project-1/ParityDataLinkLayer.java .

What changed: Most classes are unchanged. Specifically, the Simulator, Host,
PhysicalLayer, and Medium classes (and subclasses) are the same as in the previous assign-
ment. However, there are significant changes to the DataLinkLayer abstract parent class, and
these changes affect any subclass.

The most significant changes are to the abstract methods that subclasses must implement, al-
though other methods have been changed as well. Here is a list of the methods from
DataLinkLayer that have changed, and how those methods interact with one another:

• send(): It now buffers any data to send, and then repeatedly calls a new method,
sendNextFrame(), to handle the sending of a single frame. Implied in this change is
that send(), via this restructuring, now properly divides outgoing data into smaller frames
of no more than 8 data bytes each.

• bufferForSending(): Copy data provided in a byte[] into an outgoing queue. Later
used by sendNextFrame().

• sendNextFrame(): See above. This method pulls up to 8 more bytes from the send
buffer, and sends those data bytes as a frame. Notably, this method performs a number of
significant tasks:

1. Call createFrame() on as many as 8 data bytes pulled from the send buffer.

1

https://sfkaplan.people.amherst.edu/courses/2018/fall/COSC-283/
https://sfkaplan.people.amherst.edu/courses/2018/fall/COSC-283/assignments/project-2.pdf
https://sfkaplan.people.amherst.edu/courses/2018/fall/COSC-283/assignments/project-1.pdf


2. Call transmit() on the framed data. See below on a modest change to transmit();
here, we need only to know that it will send the frame, one bit at a time, through the
physical layer.

3. Call finishFrameToSend(), whose job will be to process any acknowledgment
response, advance the frame number, etc. More on this below as well.

• abstract finishFrameSend(): Process any acknowledgment frame that the receiver
may have sent in return. Note, critically, that given the structure of the simulator, the receiver
will have completely sent any response before this method is invoked—the acknowledgment,
if it arrived, should have been buffered by receiving code. The method should also do things
like control the advancement to the next frame number to send (if the send was successful).

• transmit(): In the previous version, this method accepted only one byte as a parameter.
Its parameter is now a byte[], where the method will advance through the bytes in the
sequence on its own.

• receive(): As before, it accumulates bits received by its physical layer. It then performs
a number of tasks, when appropriate:

1. When a byte-worth of bits has been received and buffered, the byte is reconstructed
and added to a queue. Note that this queue, previously named byteBuffer, has been
renamed to receiveBuffer, providing symmetry with and disambiguation from the
sendBuffer.

2. As in the previous version, it calls processFrame(), which determines whether
receiveBuffer now contains a complete frame, and if so, extracts and returns it.

3. If a complete frame is detected and extracted, the extracted frame contents are passed
to the new method finishFrameReceive() (described below).

• processFrame(): This method operates much as it did before, but for convenience, I
changed it to return a Queue<Byte> of the extracted data, rather than a byte[]. Doing
so had the data returned by this method match what finishFrameReceive() takes as
a parameter.

• abstract finishFrameReceive(): Complete the receiption of a frame by checking
its contents (e.g., perform error detection). If the frame is properly formed, then an ACK
frame should be sent, the expected frame number advanced, and the frame delivered to the
client (the Host); if the frame fails the error detection test, a NAK frame should be sent,
and the frame contents discarded (ignored).

2 Implementing Stop-And-Wait
Your assignment: Within the structure described above, implement positive acknowledgment
with retransmission (a.k.a., stop-and-wait) flow control within your data link layer of choice.

2



How you might go about it: There are a number of places in which you will need to change and
augment your code:

• Frame format: You must now add, to your frame structure, a predicitable place to com-
municate essential metadata. Each frame should have a frame number. Additionally, each
frame should indicate whether it carries data or an acknowledgment; if the latter, is the ac-
knowledgment positive (ACK) or negative (NAK)? This metadata must be in addition to the
parity/checksum value used for error detection.

• Frame number tracking: What frame number is the sender sending? What frame number
is the receiver expecting? Be sure that your data link layer maintains this state, and that it
advances the values at the right time.

• Finisher methods: The two new abstract methods, finishFrameReceive() and
finishFrameSend(), are there respectively to handle the sending of ACK/NAK frames
and their reception. You may want, in your implementation, to write helper methods on
which these call. For example, it is likely that you will want a method for constructing an
acknowledgment frame, and then have finishFrameReceive() call it.

• The receiving code: Receiving a frame now must depend on frame type. Specifically,
processFrame() now must handle the reception of ACK/NAK frames, as well as the
data frames it already processes.

3 How to submit your work
Submit your ParityDataLinkLayer.java or CRCDataLinkLayer.java source code
files (whichever one you chose to modify for this assignment), using one of the two usual tools:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at the shell prompt on
remus/romulus/vega.cs.

This assignment is due on Wednesday, Oct-24, 11:59 pm.

3

https://www.cs.amherst.edu/submit

	The simulator
	Implementing Stop-And-Wait
	How to submit your work

