
NETWORKS

PROJECT 3
Socket Programming: Cookies

1 A cookie server: Getting some wisdom
What we’re after: As a first foray into programming with sockets, we will create a fortune
cookie server (for brevity, dropping the fortune from the name). Specifically, our goal would be to
create a client/server pair that behaves as follows:

• The client establishes a connection with the server.

• The server transmits a randomly chosen fortune—a message that, one hopes, conveys some
wisdom—to the client.

• The client and server disconnect.

• The client displays the fortune.

How to get started: You will write your own Java code from scratch, creating two programs:
CookieServer and CookieClient. The essential Java classes that you will need are the
Socket and ServerSocket classes. They each contain a large number of methods, so here is
a listing of the ones most relevant here:

• In ServerSocket, ServerSocket (int port): The constructor for listening on
the given port for a new connection. Remember that using this constructor only creates the
socket; it does not itself listen for a connection.

• In ServerSocket, accept(): Listens for a connection, and once one is made, accepts
it. This method returns a Socket.

• In ServerSocket, close(): Close all connections through the given socket and tear
down any listeners.

• In Socket, Socket(String host, int port): The constructor for initiating a
connection to the given host on the given port.

• In Socket, getInputStream(): Returns an InputStream through which data can
be read from the socket.

• In Socket, getOutputStream(): Returns an OutputStream through which data
can be written to the socket.

• In Socket, close(): Close all connections through the given socket.

1

https://sfkaplan.people.amherst.edu/courses/2018/fall/COSC-283/
https://sfkaplan.people.amherst.edu/courses/2018/fall/COSC-283/assignments/project-3.pdf
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Fortune_cookie
https://en.wikipedia.org/wiki/Fortune_cookie
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/7/docs/api/java/net/ServerSocket.html
https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html


How your code should behave: In one window, you should be able to run the server, which will
wait for a connection, provide a fortune, and then exit. Using it should look something like this:

(remus)$ java CookieServer 12345
Listening on port 12345...
Connection established
Fortune sent
Exiting

On the client side, which would need to be run in a separate terminal, using it should look like
this:

(romulus)$ java CookieClient remus.amherst.edu 12345
Connecting to remus.amherst.edu:12345...
Connection established
Your fortune: To get the best grade, stop worrying
about grades. --Prof. Kaplan
Exiting

Your server should, ideally, have access to a collection of fortunes, and it should choose one of
them at random to send. Where should you get the fortunes? I hear that the Internet may have
some that you can use. Alternatively, you could make some up.

2 How to submit your work
Submit your CookieClient.java and CookieServer.java source code files (whichever
one you chose to modify for this assignment), using one of the two usual tools:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at the shell prompt on
remus/romulus/vega.cs.

This assignment is due on Friday, Nov-16, 5:00 pm.

2

https://www.cs.amherst.edu/submit

	A cookie server: Getting some wisdom
	How to submit your work

