
COMPUTER SYSTEMS

PROJECT 1
Working with simple assembly/machine code

1 x86 assembly code
We have discussed, during lecture, the basics of assembly code and how it is transformed into ma-
chine code. For this first project, you are going to get a little hands-on experience with both forms
of code and how they are really used.

For our assignments, we will be working on Linux systems that run on processors that implement
the x86-64 instruction set architecture (ISA). While we will later work with the C programming
language, for this assignment, we will use the nasm assembler to translate our assembly code to
machine code, and the GNU debugger (gdb) to help us run and debug the code. I will note here
that the materials available for all of these—Linux, x86-64, nasm, and gdb—is an embarrassment
of riches. There is extensive documentation, tutorials, code samples, and discussions on their uses,
targeted at audiences ephebic to expert. In short, when you run into difficulty or are unsure of
what to do, first, use The Google. In this context, it is the right thing to do to find answers and
understand more.

Our foray into this type of assembly programming is going to require an understanding of the
following capabilities and concepts:

• Sections: The division of the code into instructions (text) and data.

• Labels: The marking of specific instructions and data with names.

• Instructions: The sequence of steps, each defined by an opcode and operands, that make up
the program.

• Registers: The small set of fast memory elements to hold data.

• Main memory: The addressable storage of all of the instructions and data and its layout.

• System calls: How to call into the functions of the operating system kernel, passing it argu-
ments.

1

https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/assignments/project-1.pdf
https://www.nasm.us/
https://www.gnu.org/software/gdb/


2 Getting started
1. Login to a server:1 The computer systems that we will use for our projects are

romulus.amherst.edu or remus.amherst.edu, (henceforth, remus/romulus),
which are UNIX (Linux) systems.2 To use these systems, you must login to them from your
computer, using software known as an X11 Windows Server. Installing and starting this soft-
ware is modestly different from one type of computer to another:

• Windows: Follow these instructions to install and run VcXsrv for the first time.

(a) Install: Go to the web site for VcXsrv. Click the large and obvious button labeled,
Download. Your browser will download a file named something like:

vcxsrv-64.1.20.5.1.installer.exe

When this file is completely downloaded, run it. The installer will ask permission
to install the software; click Yes, and accept any defaults about where to put the
program, etc.

(b) Download configuration(s): Go to my VcXsrv web page, where there are XLaunch
configuration files—one for connecting to each server. Download one or both by
right-clicking on it and then selecting Save link as. . . I recommend saving these
to your Desktop folder for easy access.

(c) Launch: On your desktop (or wherever you saved them), double-click on one of
the XLaunch configuration files to launch it.

(d) Connect: The first time you connect to each server (and only the first time), you
will see a window asking you if you want to accept the server’s credentials/keys.
Type y and press enter.

A window will then prompt you for your username. Enter it. Note that (somewhat
strangely) asterisks will appear, hiding what you’re typing.

One more window will prompt you for your password. Enter it. Again (and this
time, more sensibly), asterisks will appear in place of what you type.

1While the tools that we will use for this course may be installed on your own computer, doing so is not trivial, and
differences in operating systems, libraries, and versions of the tools can yield unexpected problems in completing the
assignments. I strongly recommend you simply use these servers.

2These servers are identical in all but name: no matter which one you are using, you will see the same files and use
the same programs. There are two of them simply to spread the load of so many students connecting at one time.

2

http://en.wikipedia.org/wiki/UNIX
http://en.wikipedia.org/wiki/Linux
https://sourceforge.net/projects/vcxsrv/
https://sfkaplan.people.amherst.edu/VcXsrv


After all of these steps, you will be presented with an xterm terminal window, in which
you will be presented with a shell prompt. Continue onto the next step.

• MacOS: Follow these instructions to install and run XQuartz for the first time:

(a) Install: Go to the website for XQuartz. There, download the installer shown under
the header Quick Download, named something like:

XQuartz-2.7.11.dmg

Open this file, which will start the installer. Follow the instructions and accept the
default options to install XQuartz.

(b) Launch: When the installation is complete, search for XQuartz and run it.

From the menu bar, click on the File menu, and then select Terminal. A terminal
window will appear, and within it there will be a shell prompt, at which you can
type commands.

(c) Connect: Enter the following command to connect to one of the servers. Re-
place my username with your username before the @ symbol; you may connect
to remus as shown, or replace that with romulus to connect with that server:

$ ssh -Y sfkaplan@remus.amherst.edu

The first time you connect to each server, you will be asked whether you want to
accept a key—a special, cryptographic value used to keep your communication
with the server secure. Just enter yes and press enter.

You will then be prompted for your password, so enter it. Nothing will appear as
you type, hiding your password from anyone looking at your screen.

In your terminal window, you will see a new shell prompt that shows that you are con-
nected to the server that you chose. Move onto the next step.

2. Make a new directory for this class and project, and change into it:

$ mkdir -p systems/project-1
$ cd systems/project-1

3

https://www.xquartz.org/


3. Download the source code:

$ wget -nv -i https://bit.ly/AMHCS-2019F-171-p1

4. Open our first assembly code program:

$ emacs hello.asm &

3 An already-written program
You should now have an Emacs window open, showing you a simple program that writes a mes-
sage to the console (henceforth, standard output, or stdout). Here is what you should do with it:

• Read it: This program sets up and performs two system calls. The first prints a message
by calling on the kernel to WRITE a string to the stdout; the second calls the kernel to EXIT,
thus ending the program. See how various registers are set to appropriate values to carry the
desired operation and arguments to each system call.

• Assemble it: Translate this “human readable” assembly code [hello.asm] into machine
code (specifically, object code) [hello.o]:

$ nasm -felf64 -g hello.asm

• Link it: Wrap the object code [hello.o] in a special layout that the kernel will interpret
as a runnable program, known as an executable file [hello]:

$ ld -o hello hello.o

• Debug/test it: Load the executable file into the debugger, where we can run it in a very con-
trolled fashion and see the result of each step. Once loaded, first disassemble the program,
making gdb turn the machine code back into assembly code:

$ gdb hello
(gdb) disassemble _start
Dump of assembler code for function _start:
0x00000000004000b0 <+0>: movabs $0x1,%rax
0x00000000004000ba <+10>: movabs $0x1,%rdi
0x00000000004000c4 <+20>: movabs $0x6000ec,%rsi
0x00000000004000ce <+30>: movabs $0xd,%rdx
0x00000000004000d8 <+40>: syscall
0x00000000004000da <+42>: movabs $0x3c,%rax
0x00000000004000e4 <+52>: sub %rdi,%rdi
0x00000000004000e7 <+55>: syscall
End of assembler dump.

4



There are a number of things worth noting in this disassembly:

– The first column shown is the main memory address at which the program’s machine-
code instructions have been loaded. The addresses are shown in hexadecimal, or base
16, which is denoted by the prefix 0x on each address. The starting address of each
instruction to shown.

– The second column, in angle-brackets, is the address offset of each instruction. That is,
it is the number of bytes from the beginning of the code to the given instruction. For
some strange reason, the offsets are given in decimal.

– The third column provides the opcode of each instruction. Notice that the assembler
may have changed the opcode to be slightly different from the one written in the source
assembly code. For example, the movabs opcode appears in place of the mov opcode
originally written. These changes are, for our purposes, not important; do a web search
for movabs if you want to learn what the deal is. What matters is that you not be
surprised or distressed by these changes.

– What remains are the operands, and they are shown in a form that is clearly differ-
ent. Here, constants are shown with a $ prefix, and are in hexadecimal. Additionally,
register names are prefixed with the % symbol. These are merely changes in assembly
convention that, again, are not important for our purposes, and merely need to be seen
as normal. If you are curious about the difference, you can read about the difference
between difference between AT&T and Intel assembly syntaxes.

Now let’s set a breakpoint, telling gdb where in the program to pause when it reaches that
point, and then run the program to reach that point:

(gdb) break _start
Breakpoint 1 at 0x4000b0
(gdb) run
Starting program: /home/staff/sfkaplan/systems/project-1/hello

Breakpoint 1, _start () at hello.asm:13
13 _start: mov rax, 1
(gdb)

5

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/X86_assembly_language#Syntax


Now we can go through our program, one instruction at a time, seeing the registers change
and things happen:

Starting program:
/home/staff/sfkaplan/systems/project-1/hello

Breakpoint 1, _start () at hello.asm:13
13 _start: mov rax, 1
(gdb) si
14 mov rdi, 1
(gdb) p $rax
$1 = 1
(gdb) si
15 mov rsi, message
(gdb) p $rdi
$2 = 1
(gdb) si
16 mov rdx, 13
(gdb) p/x $rsi
$3 = 0x6000ec
(gdb) si
17 syscall
(gdb) p $rdx
$4 = 13
(gdb) si
Hello, World
18 mov rax, 60
(gdb) si
19 sub rdi, rdi
(gdb) si
20 syscall
(gdb) p $rdi
$6 = 0
(gdb) si
Program exited normally.
(gdb) quit

6



Note the following commands:

– si: Step forward one instruction. That is, run the next instruction and then pause again.

– p $reg: Print, in decimal, the value of a given register, which name must be (anoma-
lously) prefixed with the $ character.

– p/x $reg: Print, in hexadecimal, the value of the given register.

– run: Although we used it above to get to the breakpoint, you could issue this com-
mand at any point in the middle of the program, causing it to move forward though the
instructions without pausing until it reaches another breakpoint or the process ends.

• Run it: Now that we see what’s happening inside, let’s just run it normally:

$ ./hello
Hello, World

Notice that, on the command line, you must use the prefix ./ on the executable file name.
That indicates to the shell that the program to be run is in this directory, right here; the
hello file in this directory should be loaded. Without that prefix, the shell will look through
a list of pre-set directories—the PATH environment variable—for an executable file named
hello; when it doesn’t find it will report Command not found.

• Change it: Open the hello.asm code in Emacs again. Change the message, modestly, to
something a little more lengthy and personal. “Working in hexadecimal is cruel”, or what-
ever feels right to you.

Having changed it, go back and assembly, link, debug, and run the newly modified version.
Make sure it works.

7



4 Countdown
It is time to write (or, at least, complete) a slightly more interesting program. In your terminal,
open up the other file that you downloaded earlier:

$ emacs countdown.asm &

You will see here a skeleton of a program. As its comment header explains the program is
supposed to do the following if it works properly:

$ ./countdown
9
8
7
6
5
4
3
2
1
0

The start to the program, the system call to EXIT the program, and the data section containing
the string for the first line of output are all provided.

Your assignment is to write the loop that counts down from 9 to 0, generating the output along
the way, as shown above. You should use all of the tools that you used on the hello.asm program
in order to assemble, debug, and ultimately run a correctly running program. You will likely need
to use the following opcodes discussed in class: sub, cmp, and je/jne.

5 How to submit your work
Submit your hello.asm and countdown.asm files. You may use either of the following two
methods to use the CS submission system:

• Web-based: Visit the submission system web page at:
<https://www.cs.amherst.edu/submit>.

• Command-line based: Use the cssubmit command at the shell prompt on
remus/romulus.

This assignment is due on Sunday, Sep-15, 11:59 pm.

8

https://www.cs.amherst.edu/submit

	x86 assembly code
	Getting started
	An already-written program
	Countdown
	How to submit your work

