
COMPUTER SYSTEMS

PROJECT 2
Assembly procedure calls

1 x86 procedure calls
This project involves writing two procedures. Each uses the stack, although minimally; both re-
quire passing arguments, calculating something, and returning a result. While not a comprehensive
experience with method writing, it will make you familiar with the form and capable of reading
the assembly generated by a compiler.

Some things you are likely to need to know in order to write these procedures, building on
material covered during lectures:

• SP pre-call alignment: The stack pointer (rsp) must be aligned on a double-word boundary
before a CALL instruction is performed. That is to say, rsp mod 16 ≡ 0.

If you need to align rsp just before a procedure call, you can simply subtract the needed
value from this register, thus pushing padding (unused space) onto the top of the stack in
order to align its top. Be sure to then add this same value back to rsp when the call has
returned, restoring the top of the stack to its original position.

• The CALL opcode: Call a procedure. The use of this opcode looks like this:

call some_procedure

When executed, it will do the following:

1. Push the return address: Allocate a word-sized space on the stack by decrementing the
stack pointer (rsp) by 8; and, copy the address of the next instruction (based on the
current instruction pointer (rip) into this space ([rsp]).

2. Jump to the labeled address.

• SP post-call alignment: Given the description above, the stack pointer will not be double-
word aligned after the call. Therefore, all procedures must assume that, at the moment the
procedure begins, rsp is word-aligned, but not double-word aligned.

• The RET opcode: Return from a procedure. It doesn’t look like much. . .

ret

. . . but it does a couple of important things:

1. Pop the return address: Grab the return address stored at the top of the stack ([rsp]),
then deallocate it (rsp <- rsp + 8).

1

https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/assignments/project-2.pdf


2. Jump to the return address.

• Passing arguments: Arguments are passed into parameters first using six of the registers,
and then (if there are more than six parameters) pushing additional arguments onto the stack.
The registers are, in order:1

arg #: 0, 1, 2, 3, 4, 5
reg: rdi, rsi, rdx, rcx, r8, r9

It’s a wacky order, but it is the standard for this instruction set architecture.

• Returning a value: The return value is placed in rax. Easy peasy.

• Preserving registers: There is a subset of registers that are callee preserved—that is, when a
procedure is complete and returns, the calling procedure should be able to rely on the values
in those registers being unchanged. Those registers are, in no particular order:

rbp, rbx, r12, r13, r14, r15

If your procedure uses any one of these registers, then you must preserve its original value
at the beginning of the procedure (by pushing its value onto the stack), and then you must
restore that original value just before returning (by popping its value from the stack and back
into the register).2

There are likely other things worth knowing, but these will, I hope, be helpful.

2 Getting started
1. Login to remus/romulus and open a terminal window.

2. Make a new directory for this class and project, and change into it:

$ mkdir -p systems/project-2
$ cd systems/project-2

3. Download the project’s source code:

$ wget -nv -i https://bit.ly/AMHCS-2019F-171-p2

4. Open a mostly familiar bit of assembly:

$ emacs neo-hello.asm &
1These are the registers used for integers and pointers; if floating point values are passed, there is another set of

registers, xmm0 to vmm7, for those. We won’t worry about floating point values in this course.
2For this assignment, it is quite possible not to need to use any of these registers, thus avoiding this issue entirely.

2



3 A string-length procedure
The code that you will see should look mostly familiar. However, there are a few changes worth
noting.

Starting with main(): The C compiler, gcc has two basic jobs: first, it translates C code into
machine code;3 and, then it links (with ld) that object code with library code to form an executable
file. Libraries are collections of pre-written object code for procedures that a programmer can call
upon.

Part of the standard C library code includes stub code—a pre-written _start quasi-procedure
that initializes the stack, calls the procedure named main(), and when that procedure returns,
performs the EXIT system call. That is how, just as with Java, main() is made the starting point
of any C program.

We can leverage this behavior of gcc without writing any C code. Specifically, our assembly
programs can begin with a main procedure instead of _start. We then don’t have to worry about
performing the EXIT system call. Better yet, we will be able to call standard C procedures. If we
want to print something to the console, instead of performing a WRITE system call, we can call
the C procedure printf(). Doing so will allow us to print not just static strings, but formatted
strings into which numeric values are inserted.4

You will therefore notice that neo-hello.asm begins with main, and that the main proce-
dure ends with a ret instruction.

Null-terminated strings: In the original hello.asm, we simply hand-calculated the length of
the message to be written to the console and passed that value to the WRITE system call. However,
the standard for assembly and C programs is to use null-terminated character arrays to represent
strings. That is, a string is a sequence of characters that starts at some given address (i.e., a pointer
marks its beginning) and ends at the first zero-valued character. Here, characters are byte-sized
values, so the first null character (often written as ’\0’) is the byte whose value is zero.

Notice, in the data section of our program, that the message is a string of characters, followed
by the newline character (10) and then followed by the null character (0). That explicit zero value
marks the end of the string. Without it, C functions won’t know where the string ends.

Your assignment: Notice that there is a label, string_length, followed by no code. You
must write that procedure. Specifically, this procedure has one parameter—a pointer to a string—
and it returns one value—the length of that string. Write this procedure to count the number of
bytes in the string, using the zero-valued byte as the marker of the string’s end. If the procedure
were declared in C, it would look like this:5

long string_length (char* string)

3Actually, it pre-processes the C code, then translates that into assembly, then assembles that into object code. For
our purposes, we can just condense those steps.

4This first part of the assignment will use the old-fashioned WRITE system call, keeping things a little more familiar.
The second part will use printf().

5The C type char* denotes a pointer to an array of characters. More on that when we start using C itself.

3

https://gcc.gnu.org/


When you have written this program, you can test it mostly in the normal way, but there is a
change (given the above) in how it is linked. Specifically, using gcc instead of ld is a simple
substitution:

$ nasm -felf64 -g neo-hello.asm
$ gcc -o neo-hello neo-hello.o
$ gdb neo-hello
[or]
$ ./neo-hello

4 An exponentiation procedure
Now open exp.asm in an Emacs window. Although there are again some differences from what
you’ve seen (e.g., the actual use of the standard C procedure printf()), all of what is there has
been addressed in previous work and in the foregoing sections.

Your assignment: Write the exp() procedure recursively. Assuming 64-bit integer parameters
x and y, calculate and return xy. Do not worry about error handling (e.g., negative values for y).
You can rely on the following recursive definition of integer exponentiation:

xy =

{
1 if y = 0
x× xy−1 if y > 0

(1)

The procedure, in C, would look like this:

long exp (long x, long y) {
if (y == 0) return 1;
return x * exp(x, y-1);

}

5 How to submit your work
Submit your neo-hello.asm and exp.asm files using one of the two usual tools:

• Web-based: Visit the submission system web page at:
<https://www.cs.amherst.edu/submit>.

• Command-line based: Use the cssubmit command at the shell prompt on remus/romulus.

This assignment is due on Thursday, Sep-19, 11:59 pm.

4

https://www.cs.amherst.edu/submit

	x86 procedure calls
	Getting started
	A string-length procedure
	An exponentiation procedure
	How to submit your work

