
COMPUTER SYSTEMS

PROJECT 5
Implenting a simulated MMU

1 Simulating virtual memory
Virtual memory is typically implemented within the operating system kernel (which maintains page
tables and handles page faults), and with the support of the memory management unit (MMU) in
hardware (which uses the page tables to translate virtual addresses to physical addresses). We
want to experiment with the implementation of this abstraction, but modifying real kernel code
is fraught—its code is large and deeply complex, and any errors in the kernel can be exceedingly
difficult to diagnose. Therefore, working within the kernel is not desirable for our first encounter
with virtual memory mapping.

Instead, we will use a simulated virtual memory abstraction. We will use programs that allocate
and use addresses that are virtual, and mapped to different addresses within a region of the pro-
gram’s memory. Our project will be to write a simulated MMU that performs the translation—
the mapping—of those addresses.

1.1 Simulated and real spaces
In order to avoid confusion (and perhaps risking the creation of more confusion), we will not use
the terms virtual and physical to describe the memory that we are managing in this project. For the
kernel and MMU, the main memory (RAM) is literally physical, making the space used by each
process virtual. The spaces managed in this project are different, although analagous. Specifically,
our code will be creating two memory spaces:

Real: A single, contiguous block of memory allocated within the process and managed by our
code. The size of this real memory is determined when the process begins, and may vary
from one run to the next. This space is analogous to the physical memory managed by the
kernel/MMU, where the size of RAM is determined when the system boots.

Simulated: The space used by our process, but whose addresses are mapped to real addresses by our
simulated MMU. The size of this memory appears to be as large as the address space, and
pages are mapped to underlying real memory as they are used. This space is analogous to
the virtual memory provided by the kernel/MMU, where the size of the abstracted space is
constant, and not tied to the size of the underlying memory.

In short, we will use programs that store data into, and retrieve data from, simulated addresses.
However, those addresses will be translated automatically (by our code) to real addresses, at which
the given data will really be stored.

1

https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/assignments/project-5.pdf


1.2 The vmsim library
To make it possible for programs to use simulated memory, our code will be contained within a
library—a pre-written collection of functions that other code may use.1 This library will create the
real memory, create and maintain a page table of mappings from simulated to real addresses, and
translate the simulated addresses into real ones on demand.

Grabbing the source: Before we go any further, make a directory for this project and then,
within it, get the source code:

$ wget -nv -i https://bit.ly/AMHCS-2019F-171-p5

Look around the group of files you just downloaded; there’s a good deal to take in. Some of it
will be described below, and other parts we will cover during lab time.

The interface: The vmsim library provides the following functions:

• void vmsim_read (void* buffer,
vmsim_addr_t sim_addr,
size_t size)

Read size bytes from a simulated address (sim_addr) into the buffer.2

• void vmsim_write (void* buffer,
vmsim_addr_t sim_addr,
size_t size)

Write size bytes from the buffer to a simulated address (sim_addr).

• void vmsim_read_real (void* buffer,
vmsim_addr_t real_addr,
size_t size)

Read size bytes from a real address (real_addr) into the buffer. This function should
not be called by normal programs using the vmsim library; but it does need to be called by
the simulated MMU in order to access the real memory space.

• void vmsim_write_real (void* buffer,
vmsim_addr_t real_addr,
size_t size)

Write size bytes from the buffer to a real address (real_addr). This function should
not be called by normal programs using the vmsim library; but it does need to be called by
the simulated MMU in order to access the real memory space.

1For those more familiar with Java, a C library is like a class or a package of classes. The library provides existing
functions and provides an interface for calling those functions, much as a Java class contains pre-written methods and
public methods that other code can call.

2It is typical, in C, to take a pointer to a buffer space using the type void*, which can be read as, A pointer to
some indeterminate type of data.

2



• vmsim_addr_t vmsim_alloc (size_t size)

Allocate a block of at least size bytes of simulated space. A simulated address is returned.3

• void vmsim_free (vmsim_addr_t sim_addr)

Deallocate the block of simulated memory at sim_addr. This block must have been allo-
cated using vmsim_alloc().

The vmsim library also defines the following types:

• vmsim_addr_t: A 32-bit unsigned integer that stores a single simulated or real address.

• pt_entry_t: A 32-bit unsigned integer that stores a single page table entry. (See Section 2
for more information on the vmsim page tables.)

Writing a program to it: Included in the vmsim directory are a pair of programs that use
simulated memory and rely on vmsim to provide it. Here, we will examine the code in
iterative-walk.c.

First, notice the inclusion of the library’s header file, vmsim.h. This file (which you can open
and examine) provides the declaration of the types, constants, and functions that can be called. The
#include directive must be used in any program that uses vmsim.

Second, notice in the functions populate() and traverse() how the vmsim_read()
and vmsim_write() functions are used. Let us take, as an example, the following lines:

uint64_t current;
vmsim_read(&current, addr, sizeof(current));

We create a space, current, that holds a 64-bit unsigned integer (uint64_t). We then call
the vmsim_read function, passing it the following information:

• &current is a pointer to the space of that name. That is, the ampersand (&) is the reference
operator in C; it is the inverse of the more familiar dereference operator (*). Instead of
passing the value of current itself, we are passing a pointer to the space named current.

• addr is a simulated memory address (determined by code that precedes this example).

• sizeof(current) is the number of bytes in the space named current. Given that
current is a 64-bit value, the value passed here is 8.

The result of this call is that the 8 bytes stored starting the simulated address addr are copied in
current itself. By writing code the reads bytes from and writes bytes into the simulated space,
we can use that simulated space to store arbitrary data.4

3A program is not required to use this allocator to obtain simulated memory—it may simply use any simulated
address—but the allocator may be useful to for imposing an organization on the simulated space.

4This approach to reading and writing data is not elegant, but it is the price we pay for defining and implementing
the simple vmsim interface. This interface is quite like the one used for reading data from and writing data to files
using standard file system functions.

3



Compiling and running: In order to compile vmsim and the test programs that use it
(iterative-walk and random-hop), use the make command, simply, like so:

$ make

This command reads the Makefile (which you can examine) in order to know how to compile
the pieces of this project. Learning how to use this command is highly recommended, so Google
for make command tutorial, or just start with this seemingly decent tutorial on it.

You will see that make compiles vmsim to create libvmsim.so (a shared library), then
compiles and links the two test programs, and then creates documentation from the source code.
Specifically, it invokes doxygen, a program that turns C/C++ source code comments into HTML
and LATEXdocumentation, just the same way that javadoc does for Java code. If you open, say,
vmsim.h, you will see the comments that doxygen uses.

Once the make command is done, you will also have two executable files, one each for the test
programs. If you try to run, say, random-walk, you would invoke it like so, but see the following
error:

$ ./random-hop
./random-hop: error while loading shared libraries:

libvmsim.so: cannot open shared object file:
No such file or directory

There are (at least) two things that need explanation here:

1. Why the ./ before the program name? The shell—the program actually interpreting what
you type for each command—always takes the first item on each command line as the com-
mand itself. That is, when you type, $ emacs foo.c, the string emacs is assumed to
be the name of some executable file that can be run. (Everything that follows in your com-
mand is passed into main() as the command-line arguments.) So where does the shell
find a file named emacs? It uses the PATH environment variable. That is, the shell has a
pre-determined list of directories that it searches for executable files of the given name, and
when it finds one, it runs that file.

However, your current project directory is not part of the PATH. To run a program that is
not in one of those pre-determined directories, you must specify the directory in which the
shell finds the file. The dot (.), in UNIX, refers to the current directory; the slash (/) is the
directory separator. Thus, ./random-hop tells the shell to use the executable file named
random-hop within the current directory.

2. What does that error message mean, and how do you fix it? Any interesting program depends
on library functions. Most of these libraries, such as the standard C library (known as libc)
are stored their own set of pre-determined directories. The compiler and the shell use these
directories automatically to find and link the correct libraries to a program when it runs.

Our test programs use libvmsim, which is not a standard library in one of thse pre-
determined directories. We have to set an environment variable so that shell can find
libvmsim, which is also within our current directory. Thus, we need first to use the fol-
lowing command (and we need to use it only once):

4

https://opensourceforu.com/2012/06/gnu-make-in-detail-for-beginners/
https://www.doxygen.org
https://en.wikipedia.org/wiki/Javadoc
https://en.wikipedia.org/wiki/PATH_(variable)
https://en.wikipedia.org/wiki/Environment_variable


$ setenv LD_LIBRARY_PATH .

That is, set the environment variable named LD_LIBRARY_PATH to include the current
directory (.).5

Once we have done so, we can run one of the test programs:

$ ./random-hop
$ USAGE: ./random-hop <space size (bytes)>
$ ./random-hop 100000

This little program randomly selects simulated addresses from 0 to (in this case) 100,000. At
each address, if the value is 0, the value is then set to 1; if the value is already 1, then the program
ends, reporting the number of addresses is visited. However, this program won’t work properly.
Initially, the MMU always returns the real address 0; the mapping of simulated to real address has
not yet been properly implemented. That leads us to Section 2. . .

2 Writing the MMU
Your task is to implement the simulated MMU, making it translate simulated addresses to real
ones using page tables created and managed by other vmsim code. Before you do that, though, in
Section 2.3, there are things you need to know about the page tables and how to manipulate their
entries in C.

2.1 Address and page table format
Page tables and address spaces for vmsim mimic the format used for the 32-bit Intel ia32 (a.k.a.,
x86) ISA. Specifically, addresses are 32-bits each, with those bits divided as follows:

• [31-22]: The most significant 10 bits of each address are the upper page-table index.

• [21-12]: The next 10 bits of each address are the lower page-table index.

• [11-0]: The least significant 12 bits of each address are the byte offset within the page.

Each block of the multi-level page table is 4 KB that contain 1,024 entries each. Thus, for a
given simulated space, there is a single upper page-table (UPT), stored at some real address. For
a given address, the UPT index specifies one entry (210 = 1, 024) in that UPT. That entry contains
the real address of a lower page-table (LPT). The LPT index specifies one entry within the LPT.

The contents of the LPT entry is the real address of a page—that is, the page to which the
simulated address’s page number is mapped. If the real page’s address is combined with the 12
offset bits, the result is a specific byte address, in the real address space, to which the simulated
address maps.

5The default shell on our systems is tcsh. If you choose to use another shell, such as bash, then you must learn
on your own how to manipulate environment variables in that shell. Use The Google, and you should easily find
examples, tutorials, and other documentation on how to do such things.

5



2.2 Handy bit-manipulation operators in C
Given a 32-bit value that needs to be decomposed as described above, in Section 2.1, how do you
isolate and use each component? To do so, you need to use the bitwise operators, which allow you
to manipulate values at the bit level. Here is a listing, where you should assume that x and y are
such a 32-bit unsigned integer values.

• x >> y (shift right): Shift the bits of the value in x to the right by y positions, inserting y
0 values at the most significant positions.

• x << y (shift left): Shift the bits of the value in x to the left by y positions, inserting y 0
values at the least signficant positions.

• ˜x (bitwise logical NOT): Invert the bits, making each 0 into a 1, and each 1 into a 0.

• x & y (bitwise logical AND): For each pair of bits at each position in x and y, perform the
logical AND operation.

• x | y (bitwise logical OR): For each pair of bits at each position in x and y, perform the
logical inclusive OR operation.

• x ˆ y (bitwise logical XOR): For each pair of bits at each position in x and y, perform the
logical exclusive OR operation.

Used together, these operations allow you to isolate any group of bits in a value. For example, in
order to isolate the offset bits of an address, we can do the following:

uint32_t offset = addr & 0xfff;

First note that the constant 0xfff is 20 0’s, followed by 12 1’s, composing a complete 32-bit
value. The 1’s are all in the positions associated with the offset in the address. This constant is
being used as a bit mask—a special value used to isolate some bits of a value. By applying this bit
mask to addr with the bitwise AND operator, we achieve two things: first, the upper 20 bits of the
result must be 0 (since any value AND 0 = 0); second, the 12 lower bits of the result will be a copy
of those lower bits in addr (since any value AND 1 = itself). And thus, we keep the lower 12 bits
and clear the upper 20, giving us exactly what we wanted—the offset of the address is isolation.

2.3 Where to write your code
Open mmu.c in order to get started in earnest. You will see that very little is defined. The module
variable upper_pt_addr is declared and, via a call to mmu_init() (which is called from
within vmsim), set. This variable contains the real address of the upper page-table that the MMU
should use.

You will also see the mmu_translate() function. Your task is to fully implement this func-
tion. It is passed a simulated address, and your code should traverse the page tables in order to
translate that simulated address into a real address. That real address is what mmu_translate()
must return.

6



It is important to note that the page table, initially, is composed solely of the UPT. All of the
1,024 entries of the UPT are 0, and no LPT’s exist. Thus, the MMU must handle all three of the
following possibilities as it tries to translate sim_addr:

1. UPT[upper_index] = 0: There is no LPT to which the address’s UPT entry leads. Call
vmsim_map_fault() and then re-attempt the translation.

2. UPT[upper_index] != 0 && LPT[lower_index] = 0: There is no real page
to which the address’s LPT entry leads. Call vmsim_map_fault() and then re-attempt
the translation.

3. UPT[upper_index] != 0 && LPT[lower_index] != 0: The is a real page back-
ing this simulated page, so complete the real address with the address’s offset bits and return
it.

Notice that vmsim_map_fault() is already written to update the page table to ensure that a
given simulated page is properly mapped to some real page.

2.4 How to test your code
Once you have attempted to write mmu_translate(), you should compile it with the make
command and run either of the test programs. However, it is deeply likely that you will have bugs
with which to contend. What to do?

First, add some debugging output to your MMU code. What simulated address is being passed?
What are the upper and lower indices being extracted? What happens when your code tries to look
up the UPT and LPT entries? If vmsim_map_fault() is called, then what happens when your
code tries the translation again?

Second, use the source level debugger gdb. Set breakpoints in your MMU code and step through
it. Is it behaving as you expected? Do you actually know what you expect? Are the values in the
page tables what you expected?

Third, write your own test program. Write something even simpler than the two provided—one
where you know exactly what should be stored in a simulated space and then read back from it.
Add your debugging code to that simple test program.

In short, poke and prod the behavior of the code and figure out what is going on. Good luck!

3 How to submit your work
Submit your mmu.c file using one of the two usual tools:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at the shell prompt on
remus/romulus.

This assignment is due on Sunday, Oct-27, 11:59 pm.

7

https://www.cs.amherst.edu/submit

	Simulating virtual memory
	Simulated and real spaces
	The vmsim library

	Writing the MMU
	Address and page table format
	Handy bit-manipulation operators in C
	Where to write your code
	How to test your code

	How to submit your work

