
COMPUTER SYSTEMS

PROJECT 6
Implenting page swapping

1 Looking inside vmsim
For this project, you will be working within vmsim. I have provided all of its code (modified
somewhat from the previous project), including my own MMU implementation, as a starting point.

Grabbing new source: To get started, create a directory for this project and then, within it, get
the source code:

$ wget -nv -i https://bit.ly/AMHCS-2019F-171-p6

The most immediate change is the presence of the bs.c and bs.h files, which implement a
simulated backing store—a disk-like larger storage that allows you to read and write whole blocks
(each conveniently 4 KB).

Additionally, you can now look inside vmsim.c to see how it works. Of paritcular interest is
the function vmsim_map_fault(), since it is responsible for handling MMU translations that
fail. You should also notice, in mmu.c, that the MMU now does two new, important things:

1. Test the resident bit: Each page table entry uses the bit in position 0 to indicate whether
that simulated page is mapped to an honest to goodness real page that is available and ready
for use. If this bit is 0, the translation fails.

2. Set the referenced and dirty bits: When a translation succeeds, the bit at position 1 is set
(to 1), indicated that this simulated page has been referenced. If the reference is a write
operation, then the bit at position 2 is set (to 1), marking the simulated page as dirty.1

There are likely other features that you will want to take in, including a number of #define
macros that I’ve used for manipulating bits, various helpful constants, etc. Get your head wrapped
around the code.

2 Creating a page swapping mechanism
Notice that the new backing store device is not initially used by the provided code. This code will
compile and run, but the real memory is small.2 Any program that uses 1 MB or more will fail.

Your task is to make use of the backing store device to swap pages to and from real memory.
Each time you do, the page tables must be updated to reflect the change. Simulated pages backed

1Notice, also, that mmu translate() now has a second parameter that indicates whether the memory reference
is a read or write operation.

2Of the 5 MB in the default real memory size, the first 4 MB + 4 KB are reserved for the page table; slightly less
than 1 MB is available for backing simulated pages.

1

https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2019/fall/COSC-171/assignments/project-6.pdf


by real memory should have their resident bit set and their translations should succeed; those not
backed by real memory, and held only in the backing store, should have this bit cleared so that
translations fail. The vmsim_map_fault() function must identify attempted uses of pages on
the backing store and initiate a page swap. How you choose to approximate the least recently used
policy in order to select a page in real memory for replacement is up to you.

3 How to submit your work
Submit your vmsim.c source code file using one of the two usual tools:

• Web-based: Visit the submission system web page.
• Command-line based: Use the cssubmit command at the shell prompt on
remus/romulus.

This assignment is due on Thursday, Nov-14, 11:59 pm.

2

https://www.cs.amherst.edu/submit

	Looking inside vmsim
	Creating a page swapping mechanism
	How to submit your work

