
Locality of Reference,Patterns in Program Behavior,Memory Management,and Memory Hierarchies|VERY rough, partial, incompletely-baked draft.DO NOT REDISTRIBUTE(Comments welcome.)Paul R. WilsonAbstractLocality of reference is crucial to the performance ofmodern computers, but is actually poorly understood.In this paper, we survey issues in locality and memoryhierarchy design, attempting to bring together whatis known, correct commonmisconceptions, and clarifywhat is not known.We present a uni�ed approach to locality, based onthe concept of timescale relativity, which simply saysthat some patterns in program behavior are relevantto issues of caching, and others are not, and that thedi�erence depends crucially on the timescale relevantto a particular cache.Memory hierarchies use a kind of online, adaptivealgorithm to control caching; such algorithms cannotbe studied properly without some understanding ofthe regularities in the \data" (program behavior) theymust process.We attempt a vertical uni�cation, showing that lo-cality of reference results from regularities in the struc-ture of programs, and from regularities in howmemoryallocators map program objects onto virtual addressspace.
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1 OverviewThis paper discusses several interrelated issues in thestudy of locality and algorithms:� locality of reference in programs and its e�ect im-plications for memory hierarchy design,� principled design of memory hierarchies,� locality properties of data sets more generally (i.e.,not just locality of reference, but regularities moregenerally) and their importance for the algorith-mic analysis of common data structures such asbinary trees, and� locality e�ects of algorithm and data structurechoices, bringing together the issues of algo-rithms' responses to regularities in data and theresulting e�ects on locality of reference.1.1 Motivation1.2 Problems in MemoryManagementResearchWe believe that the study of locality of reference hasbeen hampered by a lack of a clear qualitative con-ceptual framework and a corresponding absence of ataxonomy for understanding program behavior as ita�ects memory hierarchies. Similarly, some algorith-mic analyses are unduly limited by simplistic assump-tions about the regularities|or, more often, the lackof them|in input data sets. We believe that by clar-ifying some of the basic issues in the analysis of algo-rithms, we can make it easier to conduct more mean-ingful empirical study of algorithms, and also providea useful framework for more realistic formal analysis.One of our guiding hypotheses is that many kindsof programs and data exhibit at least one of a smallset of common regularities, and that progress in thedesign and analysis of algorithms depends on catego-rizing those regularities, and relativizing analyses ac-cording to basic categories of input data. Conversely,failure to recognize the presence of common regulari-ties in data prevents the development of more re�nedanalyses and valid empirical methodology.Too frequently, algorithms whose performance isdependent on regularities in their inputs are re-garded as too di�cult to analyze formally, and onlytheir simplest properties are proved. Typically, re-sults are given for worst-case, best-case, and \aver-age" or \expected-case" performance. (Signi�cantly4



\expected" performance is usually for unpatternedor simply-patterned random inputs, which are oftenquite unrealistic.) Beyond that, empirical evaluationsare used to assess their performance on real data.Unfortunately, the empirical evaluations are oftenquite limited|and di�cult to draw general conclu-sions from|because variations in performance are notproperly attributed to signi�cant interactions betweenalgorithms and the data they process. Worse, many\empirical" evaluations embody crucial simplifyingthe assumptions that systematically bias the results,especially through the use of pseudo-random syntheticinput data, and these biases often go unrecognized.1We believe that the situation with many kinds ofdata-dependent algorithms is less grim than it oftenappears: many kinds of data exhibit similar grossregularities which can be exploited reliably, and thesearch for relevant regularities can be constrained byanalyzing the algorithms' own sensitivities to commonregularities|or insensitivities to other possible regu-larities. Thus it should be possible to derive a fairlysimple and useful taxonomy that allows characteri-zation of the purposes to which an algorithm may beput, and its appropriateness for the purpose. Likewise,recognizing which regularities are relevant allows anal-ysis of data sets, to determine which algorithms maybe appropriate for di�erent kinds of data in practice.1.3 Who Should Read this Paper, andHow[ NOTE to the readers of this (early) draft:Hi friends. Welcome to my brain dump onlocality, which some of you have asked to see.I'm not sure exactly what form this materialwill eventually take.I hope to have a complete draft of most of itwithin a month or two, and package it up as atechnical report. By that time, it'll probablybe a little less casual (and in places, a little lessblunt).Parts of it will be incorporated into the bookI'm writing on memory management, whichwill cover allocators, garbage collectors, andpersistent object stores, as well as memory hi-erarchies. That book will be a combination of1For a striking example, see [WJNB95]; use of synthetictraces has been common in the evaluation of dynamic storageallocation algorithms, with little or no validation|introducingstrong biases toward some kinds of allocators and away fromothers.

an advanced textbook and a research mono-graph.Some of the later sections may not get writ-ten soon, or may be pulled out into separatepapers, for example the part about algorith-mic analysis, which is not written at all andneeds some experimental work done.The part about architectural issues may beabbreviated, but part of it is already written inthe form of course notes that I need to struc-ture and clean up. Likewise, I've got somefairly detailed notes on analytic models, so thatpart should be fairly easy to write.A Note about citations: this draft is veryshort on speci�c citations, but that will get�xed. The �nal version will probably have 120-200 citations, like my other big surveys. Thisversion has a lot of citations to my own work,partly because I can do them o� the top of myhead, and partly because those papers have lotsof citations of others' work related to this pa-per. ]1.4 Structure of the PaperThe rest of the paper is structured as follows.Section 2 discusses basic issues in locality of ref-erence caching policies. (While the overt content isprimarily about locality of reference, the same basicideas can be generalized to apply to many kinds ofdata-dependent algorithms, including tree algorithms,compression algorithms, result caching, code cachingin on-the-y compilers, etc.) A key concept, time-scale relativity is introduced, to help explain whenevents are relevant to the performance of a system,and which events are likely to make good predictorsof those events.Section 3 discusses prefetching and clustering, blahblah...Section 4 discusses clustering of objects to improvespatial locality... blah blahSection 5 explains issues speci�c to di�erent kindsof memory systems: high-speed hardware caches, vir-tual memory, �le systems, etc. This section may beskimmed by readers not interested in the details, butmay serve as a helpful reference for understandinglater sections.Section 6 attempts to explain deep issues in localityof reference|where it comes from, how locality in pro-grams can be made visible to the memory hierarchy,5



etc. We explore e�ects of overall system structure,programming style, and data structure and algorithmchoice.Section 7 attempts to generalize the notions of lo-cality to include regularities in data other than mem-ory reference streams. These ideas may be helpful inanalyzing a variety of algorithms whose performancedepends on the patterns in input data, such as adap-tive tree algorithms, compression algorithms, etc.Section ?? [relates data regularities to pro-gram regularities, program regularities toobject-referencing regularities, and object-referencing regularigies to memory-referencingregularities... trying to bring it all together. ]Section ?? discusses techniques for the modelingand simulation of memory hierarchies. A major pointin this section is that simple mathematical models areoften only narrowly applicable, or unsound. Markovmodels, in particular, are extremely weak and oftenmis-applied. We also discuss sound techniques, in-cluding detailed tracing and simulation.Section ?? [ presents conclusions ]2 Basic Locality of ReferenceIn this section, we discuss locality of reference in mod-erate depth. We begin with the traditional notionsof temporal and spatial locality, which have been themain ideas of locality for several decades. We then in-troduce the concept of timescale relativity, which webelieve is essential for understanding policy choices,and use it to explain the relative performance of vari-ous policies. We then proceed to re�ne the simple no-tions of temporal and spatial locality to include moresubtle characteristics of access patterns, and suggesttheir implications for memory hierarchy policies.2.1 Memory Hierarchies[ blah blah... de�ne hierarchy, levels, conven-tion that up means smaller/faster and downmeans larger/cheaper.Almost all existing memory hierarchies are basedon caching recently-used pages or blocks of data infast memory. Memory is composed of several levels ofincreasingly fast and increasingly expensive kinds ofmemory. Because of their high cost per unit of storage,the faster (\higher") levels are generally smaller andthe slower (\lower") levels are much larger.22Some authors reverse this sense of \higher" and \lower."

A simple memory hierarchy might include three lev-els: disk storage used for virtual memory paging space,main memory to hold recently-used pages in dynamicRAM (DRAM) (\mainmemory" or \core"), and high-speed cache memory to hold recently-used blocks instill faster static RAM (SRAM) (\high-speed cachememory"). High-performance machines typically addone or two more levels of still faster static RAM onthe CPU chip itself (\on-chip cache").For a typical workstation, the paging area is likelyto be scores of megabytes of disk space, divided upinto �xed-size pages of about 4 kilobytes. Main mem-ory (DRAM) is used to cache pages that have beentouched recently; the rest are left in the paging area ondisk until they are touched again. The �rst-level high-speed cache is likely to be about a half a megabyte,divided into blocks of about 32 bytes. (Page and blocksizes are generally a power of two in size, e.g., 4096-or 8192-byte pages, and 16-, 32- or 64- byte cacheblocks.)We will use the term \block" generically, to refer toeither virtual memory pages or cache memory blocks.One fact that is important to notice is that eachlevel of the memory hierarchy typically has many hun-dreds or even thousands of block frames. For exam-ple, a 32-megabytemain memory can hold 8,000 pagesof 4 kilobytes each, a 512-kilobyte cache memory canhold sixteen thousand blocks of 32-byte blocks each|and even even a 32-kilobyte on-chip CPU cache canhold a thousand 32-byte blocks. As we will see later,this will have important consequences for replacement,prefetching, and clustering policies.2.2 Temporal and Spatial LocalityThe most common fetch policy is to fetch blocks asneeded from slower storage; when a page that is notresident in fast memory is touched by a program (e.g.,referenced by a load or store instruction), the pro-gram is halted briey and the data are loaded fromslower memory into fast memory. This is called de-mand fetching; the point at which the program at-tempts to access a nonresident page (and implicitly\demands" that it be fetched) is called a miss or ademand fault.For virtual memory, this is typically done by trap-ping to software and having the software perform thedisk I/O. (This is called \page fault handling." Asmall amount of dedicated hardware detects referencesto nonresident pages and forces a trap to software that6



implements the caching policy.) Misses are handled bydedicated hardware for most high-speed cache memo-ries, because cache misses are much more common.When a miss occurs, space must be reserved in fastmemory for the demanded block. The address spaceis conceptually divided into �xed-sized blocks of data.The actual storage for a block in high-speed mem-ory is called a frame. (For virtual memory caching,pages of main memory are called page frames; we willcall blocks of high-speed cache memory block framesfor consistency, though they are traditionally called\cache lines.")The frequency of misses is one of the most importantmeasures of how well a memory hierarchy is working.The miss rate is the percentage of memory referencesthat cause demand faults.For a virtual memory, the miss rate is typically ex-tremely low|very roughly one in a million referencesis a miss (page fault), and the rest are accesses topages resident in main memory. Virtual memory missrates must be very low for a system to have reaons-able performance; disk accesses are far, far slower thanmain memory accesses|about �ve orders of magni-tude slower. A typical disk takes at least several mil-liseconds to respond to a request for a page, so it canonly respond to only about 100 requests per second,perhaps 200 for a very fast disk. On the other hand, afast CPU can execute 100 million instructions per sec-ond or more (up to several hundred) and roughly onein �ve of them are loads or stores. Thus the numberof references per second is roughly 50 million or more;if just one in a million of these is a miss, the systemwill spend about half its time executing instructionsbetween faults, and half its time waiting on the disk.If the miss rate is much higher, the machine willspend most of its time waiting on the disk, becauseit will typically only execute instructions for a shortperiod before faulting and waiting on the disk for sev-eral milliseconds. For example, a miss rate of one in10,000 may seem good, but it is actually quite bad.It corresponds to executing about 50,000 instructionsbetween page faults. At 100 million instructions persecond, executing 50,000 instructions only takes abouta half a millisecond|and then the program must waitfor several milliseconds for the disk. Actual programexecution speed will then be an order of magnitudeslower than the CPU speed. If this situation is chronic,most computer owners will buy more main memory,to bring the I/O costs down and program speed up,

making the machine more \balanced."3The situation for cache memories is rather di�er-ent. The di�erence between cache memory speedsand main memory speeds is much smaller (roughlya factor of between 5 and 50, depending on the cachelevel). For the fastest (e.g., on-chip) caches, there isusually another level of cache that usually services amiss without having to go all the way to main mem-ory. Cache misses are therefore far cheaper than pagefaults; miss rates are much higher for these small mem-ories, often on the order of 1 in 100 or 1 in 1000 mem-ory references.2.2.1 Temporal Locality and ReplacementPoliciesTemporal locality is the most often-discussed local-ity property: most programs tend to access the sameblocks of memory repeatedly over relatively short pe-riods of time, so keeping a block in fast memory fora while is likely to pay o�. If the block is touchedagain soon, it can immediately be accessed quickly,rather than being fetched from slow storage. If a blockgoes unreferenced (untouched by loads or stores) for awhile, it is evicted to slower storage, so that the blockframe of fast memory it occupies can be used to cacheanother block.When a block is faulted on, it must be put some-where in fast memory. A block frame is selected,and its contents are overwritten with the values ofthe faulted-on block. Typically, the block frame al-ready holds values for some other block that had beencached there, and its contents must be saved in slowermemory. In the general case, this requires writing thecontents of that block back to slower storage. If thatblock's values have not changed since it was faultedin, however, the same values are still held in slowerstorage (the block frame contains a \clean" copy ofthe block in slower storage). In that case, the valuesin the block frame can simply be overwritten. If theblock has been modi�ed|is \dirty"|the up-to-datevalues must be written back to slower storage beforethe block frame can be used to cache the faulted-onblock.At a fault, the memory system must decide whichblock frame to use to hold the demanded block. Since3This is not always true. For example, many database sys-tems are \I/O-bound", spendingmost of their time reading andwriting disk data and very little time actually performing com-putations over the data.7



this usually requires \replacing" one block with an-other, we refer to the policy for choosing a page toreplace a replacement policy. (Alternatively, we canrefer to this as eviction and an eviction policy.)Most common replacement policies are approxi-mations of LRU|Least Recently Used|replacement.When a block is faulted on, the block chosen for evic-tion is the one that has not been touched for thelongest time. Thus the contents of a cache with nframes are always the n most recently used blocks.Actual replacement policies are usually an approx-imation of LRU, not true LRU. This is because trueLRU replacement turns out to be expensive to imple-ment, but good approximations can be implementedquite cheaply.LRU replacement works rather well for a large vari-ety of programs, and is by far the best known replace-ment policy; it is the standard by which other policiesare judged. Later, we will explain why LRU workswell most of the time, and suggest ways in which itsperformance might be bested. We will also explainwhy LRU has some convenient properties for study-ing program behavior, even if the intent is to design arather di�erent policy that works better.2.2.2 Spatial Locality and Block or Page SizesAnother crucial locality property is spatial locality ofreference. Most programs not only tend to touch thesame words of memory repeatedly, but tend to touchwords that are near recently-touched words in the ad-dress space. This is called \spatial" locality, becausethe ordering of words in the address space providesa hint as to which words are likely to be touchedsoon. It would be more accurate to call this \spa-tiotemporal" locality, because it has a crucial tempo-ral component|a word is likely to be touched if it isnear (spatially, in the virtual address space) somethingthat has been accessed recently (temporally).Spatial locality is the reason that memory systemstypically use pages or blocks, rather than simply trans-ferring individual words of data from one level of thememory hierarchy to another. If we were to transferindividual words to and from disk in a virtual mem-ory system, the system would be unusably slow|eachword transferred would take several milliseconds. Bytransferring (say) 4 kilobytes at a time, it is possi-ble to load data into fast memory much, much morequickly|roughly a thousand times faster.Spatial locality is a more subtle topic than it mayseem at �rst glance, because it is not independent of

temporal locality.One important fact to notice is that spatial localityfor one block size often appears as temporal localityfor larger block sizes|i.e., touches to nearby blocksfor a given block size often become repeated touchesto a single larger block if a larger block size is used.Another important subtlety is that when programsare written in high-level programming languages, theyare written in terms of references to �elds of language-level data objects|not memory addresses. How theprogram-level locality is mapped onto memory-levellocality depend strongly on the compiler's layout ofobjects and on the allocator's placement of those ob-jects in memory. This will be discussed in depth inSection ??.2.3 Where does locality come from?While locality of reference is a crucial property forcomputer systems, and a lack of it would e�ectivelybring the computing world to a halt, little is actu-ally known about it. In particular, the sources of lo-cality have never been examined in a systematic andthorough way. By and large, locality is regarded asa mysterious property, which computer architects andoperating system designers exploit.There are a few exceptions to this generalization,of course; in some cases, the locality characteristics ofparticular kinds of simple and regular algorithms arequite well understood. By and large, however, onlysimple special cases are understood very well at all.In the following, we'll sketch a simple conceptualframework for understanding what locality is and whyit exists.The �rst question about locality of reference shouldbe what is locality?. We've given a couple of simpleexamples of locality properties, namely simple tempo-ral locality and simple temporal locality. In our ter-minology, these are just two of many kinds of locality,which is a necessarily vague concept. Locality is a verygeneral term that means something like \regularitiesin program behavior," especially exploitable regulari-ties, and especially regularities that are exploitable forcaching purposes.2.3.1 Multiple LevelsThe second question about locality of reference shouldbe reference to what? A normal memory hierarchy ex-ploits program references to virtual addresses; spatiallocality is a regularity in the referencing of things that8



are nearby in the virtual address space; the memoryhierarchy exploits those regularities in it's caching pol-icy, i.e., in its mapping of virtual storage to physicalstorage.Notice that programmers don't usually write pro-grams at this level of abstraction. Most programs arewritten in high-level languages, with references to pro-gram objects such as scalars, arrays and records. Thusthere is a logical level of program locality|the pat-tern of a program's references to language-level en-tities like records|which is somehow mapped ontovirtual address space by programming language im-plementations.So there are at least two important levels of locality,and the locality exploited by memory hierarchies isa function of at least two things: how programmerswrite programs, and how language implementationsmap language-level behavior onto the virtual addressspace.There are other, higher levels as well, however. Soft-ware is typically structured in layers, and each layer'simplementation can a�ect locality.Programmers choose language-level representationsof conceptual, application-level entities. For example,a programmer might choose to represent a set of peo-ple using a list, a tree, or a hash table of records;each of these has very distinctive locality e�ects atthe at the level of references to individual programobjects. For sophisticated algorithms and data struc-tures, there may be several levels of mapping betweenthe conceptual objects (and high-level algorithms) andthe language-level objects (and low-level algorithms).2.3.2 Programmers' Problem-Solving Strate-giesDivide-and-conquer strategies. Programmers often solveprogramming problems by dividing them up into sub-problems, dividing those up into smaller subproblems,and so on, until very small problems can be solved inactual pieces of code. This hierarchical plan structureoften a�ects memory-referencing patterns, causing fre-quent references to data objects during certain phases.Sometimes, the hierarchical task structure is reectedin the pattern of repeated references to memory loca-tions, but sometimes it is not. A particular kind ofproblem-solving phase of a program may always ref-erence the same data structures, or it may referencedi�erent data structures, but in the same way.

Loops. Many programs loop to repeat the same ac-tion over and over again; this may cause repeated ac-cesses to the same memory locations, or it may causedi�erent memory locations to be accessed in the sameway. Loops often have a major e�ect on locality; loopsover a small amount of data may repeatedly touch thesame items, resulting in excellent temporal locality.Loops over larger amounts of data have very di�erente�ects.More complex control ow.2.3.3 Problem Structure and Input DataSome programs' referencing behavior is heavily depen-dent on the characteristics of their input data. A com-piler, for example, may act very di�erently when com-piling a �le full of small functions using simple con-structs than it does when compiling a �le containinga few very large, complex functions. An interactiveword processing program may behave very di�erentlywhen given di�erent commands.In these cases, the regularities in the inputs maybe a source of regularities in the program's behav-ior, which is not evident from an examination of theprograms. A compiler's behavior may be largely deter-mined by the coding style of its input source programs,and a word-processor's behavior is strongly a�ectedby its users' work habits|e.g., how often they simplytype in text, and when they perform commands likesearches or reformatting over the entire document.2.3.4 Compilers' object layout choicesCompilers a�ect spatial locality by grouping �elds ofobjects together in some order. Most compilers layout the �elds of a record (or class instance) in consec-utive words of memory; accesses to multiple �elds ofthe same object are accesses to nearby memory. Thisgrouping is especially important for large arrays [blahblah...]2.3.5 Placement choices by allocators, com-pilers and linkersThe locality of references to executable code and stati-cally allocated data are strongly a�ected by compilersand linkers. Most compilers organize machine codeinto object �les in roughly the order procedures arede�ned in source �les, and lay out statically-allocated9



data in a similar order. Linkers may combine the con-tents of object modules in a somewhat di�erent orderin executable �les.Usually, compilers and linkers approximately pre-serve the order of de�nition of variables, and the orderof de�nition of procedures, but may group the vari-ables from multiple �les together, separate from thecode.4The preservation of de�nition ordering seems tohave relatively good e�ects on locality, because thede�nition ordering often reects the problem-solvingstrategy used by the program. The hierarchical struc-ture of execution turns out to result in good spatiallocality of accesses to the code and variables, becauseit is often strongly correlated with the plan structureused in problem solving and the phase structure ofprogram execution.2.3.6 Memory Re-allocationMemory allocation strategies have a major e�ect onlocality. [blah blah blah...]Stacks. Stack allocation often has excellent localityof reference. An important example of this is the ac-tivation stack for a typical program in a conventionallanguage; local variables and control information areallocated in activation records when procedures areentered, and deallocated when the procedure is ex-ited. Typically, the stack height does not vary dramat-ically over a short period of time|the stack grows andshrinks repeatedly by one or a few activation records,reusing the same area of memory for a very large num-ber of activation records. The active part of the ac-tivation stack|the top|may be touched millions oftimes per second, and stay cached in fast memory.Stacks created by programs for other purposes oftenhave similarly high temporal locality; if allocated incontiguous memory, as activation stacks usually are,spatial locality is likely to be excellent as well. A singlevirtual memory page may contain the whole stack, orthe active part of a large stack, and that page may bereferenced very, very often.Even if the stack is represented as a linked list inheap memory, temporal locality is very likely to beexcellent; spatial locality is likely to be excellent as4Linkers also often group literal data together, and initialvalues of global variables together, separately from uninitial-ized variables. This separation allows one copy of code andconstants to be shared between multiple processes running thesame program.

well, depending on the heap memory allocator usedand the pattern of allocation that creates the stack.Roughly stack-like use of heap memory. Heapmemory allocation can have major e�ects on locality;for many programs, heap data account for most of thememory used, and references to objects on the heapare the dominant locality consideration.Many programs use heap memory in roughly stack-like ways, at the program level, even when they arenot using stack data structures. Many objects arequite short-lived, and freed|that is, their storage isreturned to the free memory pool|very shortly afterthey are allocated. This is often true because most ob-jects are created and used to solve small subproblems(near the leaves of the problem decomposition graph),and then discarded.An allocator can take advantage of this by reusingrecently-freed memory in preference to memory thathas been free for a longer time.Notice that in this case, the program itself may have\bad" locality of reference, in that it touches manydi�erent objects over a relatively short period of time,but its actual locality of memory referencing may beexcellent; the allocator can map di�erent language-level objects onto the same virtual address ranges overtime, so that the same memory is referenced over andover.Reuse of language-level objects for di�erentconceptual objects. In a similar way, program-mers may reuse memory by mapping multiple concep-tual objects onto the same language-level object overtime.For example, in FORTRAN or C programs, it iscommon to use a statically allocated array manytimes, holding di�erent data each time. Consider aFORTRAN program that repeatedly reads data sam-ples from a �le into a 1024-element array and performsan FFT on each set of 1024 samples. Conceptually,each set of samples is a di�erent entity, but the pro-grammer has mapped them onto one language-levelarray.More generally, [blah blah blah...]Use of di�erent language-level objects for thesame conceptual objects.10



2.3.7 Pragmatic FactorsLimitations of existing hardware.Limitations of existing software.2.4 Some Useful Concepts, Terminol-ogy, and TechniquesIn this subsection, we will introduce some convenientterminology and techniques for studying memory hier-archies, and for the study of algorithms and sequencebehavior more generally.2.4.1 Localities and Working SetsThe term \locality" was used originally used (in acaching context) to refer to a speci�c collection ofitems used by a phase of a program|it was a \count"term (e.g., \this locality" vs. \that locality") ratherthan a mass term (e.g., \this much locality" vs \thatmuch locality").The basic idea, and it's still a good one, was thatprogram phases tend to preferentially touch certainitems, and the set of item touched by a phase is calleda \locality." Notice that a locality is a temporally re-lated set of items|things that tend to be accessed atabout the same time, not a spatially related set interms of address space. The items in a locality maybe spread across the address space, but still be \neigh-bors" in time, in terms of the ordering of programs'accesses to data.More recently, the term \locality" has generallybeen used in a more exible way, as we do in thispaper, and the old sense has been largely supersededby the term \working set." A working set is theset of items \worked with" by a phase of programexecution|a set of items that tends to be touched atabout the same time.There is also a very speci�c technical sense of theterm \working set," de�ned by Denning. We will dis-cuss this technical sense later in the paper, but for thetime being we will use the intuitive sense, in which aworking set (or locality) is a set of blocks (or objects)that tend to be accessed \together," during a programphase.It is important to realize that working sets (or lo-calities) are not necessarily disjoint sets|the workingsets of two phases may overlap, if both phases refer-ence some of the same items.

Working sets are also timescale-dependent. If welook at program's behavior over short timescales rel-evant to small caches, we may notice that it tends tohave di�erent working sets for di�erent short phases.If we look at the same program over a large timescale,we may notice that there are larger phases with largerworking sets, and the working sets of the larger phasesinclude the working sets of the smaller phases.Working sets may be more or less distinct. A certainkind of program phase may always access the sameitems. On the other hand, di�erent occurrences of thesame kind of phase may access some of the same items,but some di�erent ones too.2.4.2 Latency and Transfer TimeThe cost of fetching a block from slower storage hastwo components: latency and transfer cost.Latency is the \startup time" required to initiatethe transfer, e.g., detecting that a block is not presentin fast memory, signaling the slower memory device,and whatever that device must do to prepare to trans-fer the data. Generally, latency is independent of theamount of data to be transferred.Transfer time is determined the amount of datatransmitted and the rate at which data can be trans-ferred once the transfer has been started, e.g., howquickly successive bytes or words of data can bestreamed from slower to faster memory. (This rateis usually known as \bandwidth," by analogy to theinformation rate of a communications frequency band.Bandwidth (transfer rate) is inversely related to trans-fer costs|the more bandwidth you have, the fasteryou can transfer data.In general, it is usually easier to increase band-width than to decrease latency. In solid-state com-ponents, latency is often determined by physics|thespeed of swithching and signal propagation, and ulti-mately bounded by the sizes of devices and the speedof light. In moving-media memories (e.g., disks), it isquite di�cult to make physical parts move extremelyquickly due to mechanical problems.5In contrast, increasing bandwidth is often easier,though expensive, through the brute-force approach5This is not to say that latencies do not decrease with im-proving technology|e.g., increasing levels of integration so thatthe distance between components on a chip is shorter. It's justthat such engineering is fairly di�cult, even if cost is no object.For example, a disk head's inertia increases with the square ofits velocity, making it di�cult to double the speed at which itmoves without introducingmechanical problems such as bounc-ing against the limit of its \throw" and taking longer to \settle."11



of adding parallel hardware. By using more wires (oron-chip traces), solid state devices can communicatemore bits simply by multiplying increasing the widthof the data paths. By using more disks, it is possibleto read more data o� of disk in a given amount oftime.6Latency and transfer costs of magnetic disks.For a magnetic disk, the main contributors to latencyare the seek time and the rotational latency. Theseek time is the time it takes to move the magneticread/write head to the appropriate track of the disk,and the rotational latency is the time spent wait-ing until the desired block of data comes under theread head. Both of these costs are are actually rathervariable|depending on where the read head is posi-tioned relative to the desired track, and the rotationalposition of the disk when it gets there. The overallaccess time may vary by a factor of two or three, e.g.,from 3 to 8 milliseconds for a fast disk. (For mostdiscussions, however, the access time is assumed to bea constant \average" time and variations are ignored.Other time costs may also contribute to latency,such as page fault handling (trap handling, plus thecost of the routines that decide what command to is-sue to the disk, etc.). Due to the extreme di�erencein speed between moving parts and solid-state switch-ing devices, these costs are usually much less than thecost of the disk seek and rotation.The transfer rate of a magnetic disk is essentiallythe rate at which bits can be read o� of (or written to)the disk, once the desired bits begin coming under theread/write head. This is determined by the densityof bits within tracks, and the rotational speed of thedisk. A very fast disk can generally deliver bits ata rate of roughly four megabytes per second, or onefour-kilobyte page per millisecond. Slower disks maysupport half that transfer rate.Latency and transfer costs of solid-state mem-ories. For solid-state memories, the main contribu-6These approaches are not always easy, however. Increasingthe width of data paths may introduce other costs, by increasingthe amount of power needed and exacerbating electrical isola-tion and heat dissipation problems, or by increasing fanoutsof circuits, which may interfere with making them as fast aspossible. Increasing the number of pins used to communicatebetween chips may seriously decrease the yield of a manufac-turing process as well as exacerbating power problems, becausepins are one of the greatest sources of failure. At the disk level,increasing the number of disks used puts further demands onthe communication channels between disks and memory.

tors to latency include signal delays and setup timeswithin memory modules.A main (DRAM) memory module is usually inter-nally structured as a logical 2-dimensional array, andan entire row of bits is read from this array into aspecial bu�er. (Once the row has been read into thebu�er, successive words from that row can be sent veryquickly.) [blah about static RAM...]The transfer times of silicon memories are mostlydue to limitations on signaling speeds because of thephysical characteristics of the connections. blah blahblah...2.4.3 Balancing Latency and Transfer Time.An important issue in memory hierarchy design is bal-ancing latency and transfer time. In general, there issome tradeo� between them; the exact tradeo� is de-pendent on spatial locality, but an approximate trade-o� works fairly well for most programs.By making the block size larger, we can transfermore data at each miss. If spatial locality is good,this will load the needed data into fast memory morerapidly, by reducing the number of misses|and thecontribution of latency costs to the overall cost oftransferring data. If spatial locality is excellent, thentransfer costs will not go up much at all|essentiallythe same amount of data will be transferred, in fewerand larger units.On the other hand, if spatial locality is poor, havinga too-large block size will increase costs in two ways:� Increased transfer times. If much of the extradata transferred at each miss turns out not tobe used before it is evicted, we will unnecessarilyincrease the transfer time for miss handling.� Cache pollution and increased misses. The fetch-ing of useless data will pollute the cache, evictingmore useful data. If those data are evicted beforebeing touched again, when otherwise they wouldnot be, then the overall miss rate will increase, in-directly incurring both latency and transfer costs.In general, the block size should be chosen to tradeo� between two potential problems: fetching too littledata and thus requiring more misses to load data intofast memory, or fetching more data than necessary andperhaps polluting the cache.This is somewhat oversimpli�ed, however, becausewe may prefetch extra blocks|initiating fetches of sev-eral blocks at once|rather than transferring one block12



at a time. (In that case, the block size may be smallerthan the \fetch size," i.e., the amount of data fetchedat each fetch. The block size may be chosen in partwith respect to the cost of maintaining the mappingsthat record which blocks are where in fast memory,and in part to provide exibility in fetching.)A block is really a unit of address translation|wemap a block of virtual address space to a block framein fast memory|which can be decoupled from the unitof data transfer by transferring more (or perhaps less)than one block at a time. Prefetching memory systemsmay transfer more than one block at a time, increas-ing the fetch size without increasing the block size.For the moment, however, we will ignore this compli-cation, which is discussed in depth in Section 3.In deciding on the block size (or, more generally, thefetch size), spatial locality must be taken into account.The ideal block size for programs with good spatiallocality is much higher than for programs with badspatial locality, because the extra transfer time at eachmiss is much more likely to pay o�. Unfortunately, theblock and page sizes are generally determined by thehardware designers, and \reasonable" sizes are chosen;for any given application, this may be a good size, orit may not.In general, a good choice of fetch size is one wherethe latency and transfer times are roughly balanced.For example, suppose we choose a block size so thatthe latency and transfer time are exactly equal. Inthat case, a program with very good spatial localitywill perform more (and smaller) fetches than wouldbe ideal, but the overall cost will never be more thana factor of two worse than with very large blocks|thesame amount of transfer time will be incurred fetchingsmall blocks as large ones, and the extra latency costwill be less than or equal to that.Increasing fetch sizes beyond this \breakeven" pointwill rapidly reach a point of diminishing returns, evenfor programs with excellent locality.For example, consider a cache with a transfer time of16 units and a latency of 16 units, for a total miss costof 32 units. Doubling the transfer size will increasethe transfer time to 32 units; in the best case, excel-lent spatial locality will ensure that the total transfertime is unchanged|for each two transfers we'd donepreviously, we'll do one that takes twice as long. Inthis best case, the overall latency cost will be cut inhalf by halving the number of misses.Another doubling will decrease the latency cost byhalf again, but the overall (remaining) cost by at most

a sixth, because the transfer cost is not reduced. Aftera few doublings, the decreases in latency cost are neg-ligible, because the the overall contribution of latencycosts is already small, and the transfer time domi-nates.In contrast, the transfer cost per miss increases bya factor of two with each doubling, and for programswith poor spatial locality, the consequences may be se-vere, due to increased miss service times and increasesin misses due to cache pollution.Conversely, decreasing the block size far below thebalance point runs similar risks|if spatial localityis good, halving the block size will straightforwardlydouble the miss rate; a very small block size will onlypay o� if spatial locality is very poor.In general, the block size should be chosen to benear the balance point, but perhaps somewhat largerif programs generally exhibit good spatial locality.Assessing the e�ects of block size and replace-ment policy [ blah blah... miss rate is not agood �gure of merit because it leaves out trans-fer costs...]2.4.4 Compulsory and Capacity MissesTraditionally, misses for an LRU replacement policyare divided into two categories:� Capacity misses, due to the cache being too smallto hold blocks between touches to them, i.e.,misses to blocks that have been evicted and thentouched again, and� Compulsory misses, due to the �rst touches toblocks.A miss due to the �rst touch to a block is calledcompulsory because no cache would be large enoughto hold the block|any cache would su�er a miss forthe block, independent of replacement policy or size.A miss at a repeated touch to a block is called acapacity miss because for some large cache size, theLRU replacement policy would be able to cache theblock between touches and avoid the miss.Later, [in the next section? Or move muchlater?], we will re�ne this categorization of misses.In some situations, compulsory misses are expensive,but in other situations, they may be very cheap. Theconcept of capacity misses also needs further re�ne-ment, especially when di�erent replacement policies13



are being compared, because di�erent baselines makesense in di�erent situations.2.4.5 Basic Pro�ling and Simulation Tech-niquesReference Traces and Trace-driven Simulation.Studies of locality and memory hierarchy design are of-ten done in simulation, rather than by building actualmemory hierarchies and actually running programs inthem. It is much easier to build a simulator than areal computer, and it is much easier to experimentwith variations in a software simulator than in actualhardware.To perform simulations, memory-referencing behav-ior of real programs can recorded in a trace �le, as a se-quence of trace records that record what the programdoes that is relevant to the memory hierarchy. Formost purposes, that is just a record of the references tomemory|loads and stores to particular addresses|and perhaps instruction fetches. The contents of thememory locations are not actually relevant, becausemost memory hierarchies do not adjust their cachingto the contents of memory, only to the pattern of vir-tual addresses that is accessed.Typically, reference traces are gathered by execut-ing programs in simulation, using an interpreter thatinterprets machine code and simulates an actual CPU.Alternatively, programs may be instrumented by mod-ifying their instruction sequences to not only performthe normal computation, but to record the memory-referencing that would have been done by the unmod-i�ed program.7Once gathered, the reference trace can be processedby a memory hierarchy simulator which simulates therelevant actions of a given memory system when eachevent is encountered|e.g., moving a page from slow7The best example of this is Larus' QPT tool, which rewritesan executable program to make a self-tracing version [BL92].Cmelik and Keppel's [CK93] amazing Shade tool (forSun SPARC machines) incorporates both interpretive andexecutable-rewriting features, using a dynamic compiler tospeed interpretation by decompiling, annotating and recompil-ing code on the y; these rewritten fragments are executed di-rectly to avoid the cost of true interpretation. (A cache of theserewritten code fragments is maintained, so that the costs can beamortized over repeated executions of the same code fragment.)A di�erent approach to self-tracing code is taken by Wilsonand Balayoghan's VMtrace tool, which slightly modi�es pro-grams to trace themselves using virtual memory access protec-tion; most pages are kept access protected, and a fault handlerrecords the order in which they are faulted on [?].Blah blah on limitiations of software tracing, andhardware approaches... BACH, etc.

to fast memory, changing the LRU ordering of pages,evicting a page, etc.|and records the events thatwould a�ect performance. As an optimization the ref-erence trace may be fed directly into a simulator, per-forming simulation \on the y" while a program isbeing traced. This requires re-tracing the program foreach simulation, but avoids the need to actually storethe trace in a �le. Since reference traces may containbillions of records, this can save considerable storagespace.The LRU distance string. Using an LRU simu-lator, which maintains a record of the LRU orderingof blocks, a reference trace can be transformed intoan LRU distance string. Where the original trace in-dicates the order of touches to particular words (orblocks) of memory, the LRU distance string recordsthe LRU positions of those blocks at each touch.That is, for each reference in the original string, thedistance string records how long it has been since thelast touch to that block, in terms of the number ofother blocks touched in the meantime. It is thereforea fairly direct reection of the actual temporal local-ity of a trace. It more directly reects the patternsof repeated touches to blocks, independent of whichblocks they are touches to.A simple way to transform the reference trace intoa distance string is to process the records in the tracesequentially, maintaining a data structure that recordsthe LRU ordering, for example, a sorted linear list ortree. (The list only records the block numbers, nottheir contents.) Each reference in the trace is pro-cessed by searching the ordered list and determiningthe position of the block in the list; this LRU positionis emitted as an item in the distance string. In addi-tion, the just-touched block's record is moved to theend of the list, making it the most-recently-toucheditem in the ordering and pushing intervening itemsone position the other end.We will refer to the list (or other data structure)recording the LRU ordering as an LRU queue, be-cause items are inserted at one end of the list, and getpushed along as other items are inserted. This is nota simple queue, however, since items may be searchedfor, have their position recorded when they are found,and be removed from the queue so that they can bereinserted at the end.Optimized implementations are possible, of course,for example using a balanced or adaptive binary treeto implement the linear ordering \queue."14



Note that if we �x the length of the LRU queue, anddelete items when they reach the head of the queue,we can easily construct a simple simulator for an LRUreplacement policy. The queue ordering represents themechanism for scheduling blocks for eviction. Pagesthat go untouched for a long period drift toward thehead of the queue, while pages that are touched aremoved to the tail, and saved from eviction.The length of the queue represents the size of fastmemory, i.e., the number of block frames, and thequeue ordering represents the LRU ordering main-tained by the replacement policy; a touch to an itemthat is not yet in the queue counts as a miss, and atouch to an item that is in the queue counts as a hit.A slight improvement lets us use this basic imple-mentation strategy to simulate many sizes of memory,not just one, during a single pass through a trace. No-tice that the elements of an LRU queue of m blocksare a subset of the elements of an LRU queue of m+1blocks. For example, the �ve most recently touchedpages include the four most recently touched pages,plus one more. A longer LRU queue is always a pre�xof all shorter LRU queues, so we can combine theminto a single arbitrarily-long queue which representsany number of �xed-lenth queues by combining theirtails.The LRU distance histogram and LRU misshistogram. The LRU distance string can be sum-marized by the LRU distance histogram. This is sim-ply a histogram that records how many times eachLRU queue position was touched during the process-ing of a trace, or during an interesting subintervalwithin the trace.The LRU distance histogram can be computed fromthe LRU distance string, by simply counting the num-ber of hits to each queue position in the entire string.This can also be done on the y, during LRU process-ing of the trace, by simply incrementing counters inan array (one element for each queue position) ratherthan actually emitting the distance string.The LRU distance histogram is interesting becauseit shows the locality characteristics of a program in away that is independent of any particular memory size,but which can be interpreted with respect to any mem-ory size of interest. For any LRU replacement policy,it records which events are relevant to which sizes ofmemory. For an LRU memory of size m, touches toLRU queue positions 1 through m represent hits, andfor touches to positions m and above represent misses.

Because of this, we can trivially compute the num-ber of misses for every memory size, by simply addingup the numbers of hits to higher LRU queue postions....it's a simulator... blah blah... stack prop-erty... ...blah blah... what \typical" distanceand miss histograms look like... ...caveats...2.5 Some \Typical" Program BehaviorMost programs exhibit some common locality prop-erties, which it will be useful to distinguish. We willintroduce some terms, which should easily be under-standable from the preceding discussion.2.5.1 Simple Heat (Hot/Cold ReferenceSkew)Hot/cold reference skew is perhaps the simplest kindof locality|a program may touch some items muchmore often than it touches others. For example, theactivation stack of a program may stay within a singlevirtual memory page, and that page may be touchedevery few instructions throughout the whole executionof a program. Other pages may be touched much lessoften.All other things being equal, it is better tocache \hot" (frequently-touched) blocks than to cache\cold" (infrequently-touched) blocks. In many cases,however, other things are systematically not equal,and caching based solely on \heat" (the number oftimes a block is touched) does not work well.In real programs, it is common for some blocks tobe very hot and others quite cold. Over a run of a pro-gram, some blocks may be touched millions of times,and others once or a few times, with still others beingsome intermediate number of times.On average, the hot/cold distribution of blocksfor programs in general is roughly exponentiallydecreasing|very few blocks are very hot, and fewblocks are warm, and very few many blocks are muchcooler.For any given program, however, the distributionmay not be at all smooth. There may be distinctsets of blocks which have similar heat, and no blockswith intermediate heat values. (For example, theremight be very hot, hot, and cool blocks, but no blockswith heat values intermediate between those, i.e., nomedium-warm or cold blocks.)Figure ?? shows a heat distribution for thepages during a particular run of a particular program([which program?]). The horizontal axis represents15



Figure 1: Heat DistributionFigure 2: Recency Distributionaddress space (block number) and the vertical axisrepresents the total number of touches to each blockduring short segments of program execution.2.5.2 Recency Skew and Recency Distribu-tionsAnother common property of real programs is recencyskew|at any given time, a program is much morelikely to touch a block that it has touched recentlythan one that it has not touched for a long time. Thisis the principle behind LRU caching.More generally, a program or a program phase maytend to touch things again after touching a certainnumber of other things. For example, a simple loopover 100 blocks may touch the 100th most recentlytouched block, but never the 70th or the 121st mostrecently touched block. This is what the LRU dis-tance histogram illustrates|the recency distributionof a program.Figure 2 shows the recency distribution for [sameprogram], over an entire run. Figure 22.5.3 Phase BehaviorThe hot/cold skew or recency skew of a program oftenvaries over time. If we look at simple heat histogramor LRU distance histogram for a particular programphase, it may look very di�erent from the histogramfor the entire program run.Figure 3 shows the evolution of block heat for thesame program as in Figure 3. Here the horizontal axisis time, increasing toward the right. (We have dividedexecution into \time slices" of a few [million] instruc-tions.) The vertical axis represents adddress space ad-dress space (block numbers). (This corresponds to thehorizontal axis of Figure 1.) The gray scale representsthe number of touches to each block in a particularunit of time, which corresponds to the vertical axis ofFigure 1. The gray scale is logarithmic|slight di�er-ences in tone represent fairly large di�erences in heat.Figure 3: Heat Distribution Over Time

Figure 4: Recency Distribution Over TimeFigure 4 shows the evolution of the recency distri-bution over time in a similar fashion. (Time increasesto the right, and MRU queue position increases to-ward the top.) Again, the gray scale is logarithmic, sovisible patterns represent fairly strong regularities.[ramble about patterns in �gures a little]2.6 Demand Fetching Policies andTimescale RelativityA replacement policy is implemented by an adaptivealgorithm, whose job is to predict which blocks ofmemory are likely to be needed soon, and which arenot. The only information a general-purpose replace-ment policy can use to make this prediction is theactual string of references up to the point where afault occurs. This string may contain many complexpatterns, and a replacement policy could conceivablyexploit any information in the string. In designinga replacement policy, the goal essentially to �lter thereference string to �nd highly predictive information|and the robustly predictive information. Not only is itdesirable to have a policy that makes accurate predic-tions, but the heuristics should work for a wide varietyof programs' access patterns and seldom (or, ideally,never) fail disastrously.In general, we can view the replacement policy's jobas having three parts:1. detecting regularities in past references to mem-ory,2. using the detected regularities to predict futurereferences, and3. using the predictions to determine a good choiceof which blocks to cache and which to evict.[ We're talking about demand fetching poli-cies only, here, no prefetching. The ideaswill be generalized later, in the discussion ofprefetching and clustering. ][ Blah blah... can screw up on any of these...few studies separate out the three issues...don't have a good grasp...We'll talk about optimal and LRU beforetalking about other policies... these are inter-esting because they provide an interesting pairof baselines... optimal because it's optimal...16



LRU because it's common, implementable, andcompetitive with optimal. Any good policymust resemble LRU to some degree... ]2.6.1 The Holy Grail: Optimal ReplacementThe replacement policy's main task is to discriminatebetween blocks that are worth keeping in memory, sothat they can be touched again without a fault, andblocks which should be evicted sooner to make roomfor \more important" data. The ideal replacementpolicy is be one that could accurately predict the timeof the next touch to each block, and keep in memorythose that will be touched soonest. This policy is notimplementable in practice, because complete accuracyfor arbitrary programs requires being able to see intothe future; this is not possible in a real system wherethe memory hierarchy must respond to program be-havior as it happens. (However, it turns out to beeasy and useful to implement such an optimal policyin simulations, as will be discussed later.)Note that the ideal (demand fetching) policy onlydiscriminates between blocks that will be touched soonand those that will not be touched soon, where \soon"is relative to the memory size. For a memory of sizem, the ideal policy retains the m blocks that will betouched soonest, and evicts the blocks that will onlybe touched later. Blocks that will only be touchedlater (after touching m distinct blocks) can be evictedat any time|e.g., at the next page fault. Such ablock is doomed not to be touched again until afterit has been evicted anyway, so its space might as wellbe made available for caching something else in themeantime.[explain or fwd ref. explanation of why thisis always true]Thus once the last reference to a block for a whileoccurs, it can safely be evicted immediately to makespace. Here, \for a while" means for a period duringwhich m or more other pages are touched.Note that if a page will be touched sooner than that,it doesn't matter much how much sooner|it will be amistake to evict it. The page will simply be evictedand then faulted in again when touched, so it will costexactly one fault to make this mistake once.Note also that if a block will not be touched form block faults or longer, it doesn't matter how muchlonger. It doesn't matter exactly which of these blockswill be touched in what order. If all of them will notbe touched \for a while" that's long enough that they

all should be evicted. The blocks can be evicted in anyorder, as needed to make room for faulted-on blocks.From this we can see that even a perfect replace-ment policy doesn't need to make very precise predic-tions with respect to future access patterns, or eventhe times until the next accesses to blocks: it onlyneeds to accurately determine whether a block is inthe \touched soon" set or the \not touched soon" set.If we assume that the prediction function is accu-rate, the only situation in which precision matters tothe e�ectiveness of the algorithm is when there is achoice between blocks that will be referenced at roughlythe same time, and both are touched after roughly mother blocks are touched.From this we can conclude several basic thingsabout how to construct a good replacement policy,which approximates the ideal:� Details of future access patterns don't usuallymatter much.� Details of past access patterns only matter if theyare good predictors of the crucial characteristicsof future access patterns.� The crucial information about access patternsis timescale relative, i.e., keyed to the memorysize in question, and when the program will havetouched that many distinct pages.� The replacement policy needs only to make abinary distinction for each page|to keep it orevict it. This judgement is made relative toother pages, however; it depends on how manyother pages will be touched sooner (but not whichones).2.6.2 LRU and Looping BehaviorMost replacement policies are based on a simple kindof heuristic, where touches to blocks are used to pre-dict touches to blocks, and no complex or subtle pat-terns are recorded or used for prediction. LRU, forexample, only records the relative ordering of the lasttouches to the cache-resident blocks. All other infor-mation about previous patterns of touches to thosepages is ignored, and no information is retained aboutblocks that are not currently in the cache. Thisturns out to be surprisingly e�ective, despite the ob-vious (self-imposed) poverty of information used byLRU. Clearly, the small amount of information that isrecorded turns out to be highly predictive.17



Equally important, LRU ignores information thatusually doesn't matter much to its task of prediction.Other, more sophisticated policies have been designed,based on reasonable intuitions, but they have gener-ally failed to outperform LRU, and usually do signif-icantly worse|sometimes disastrously so. LRU turnsout to adapt quickly to programs' changing behavior,and is seldom \distracted" or \fooled" by patternsthat foil its heuristics. It is dumb, so to speak, butthis can be e�ective because it doesn't \outsmart it-self" trying to �gure out subtle patterns that may beunreliable predictors for some programs.It is particularly interesting to study LRU's behav-ior for looping patterns of memory references, for sev-eral reasons:� Loops are a very common control structure, andoften dominate programs' overall pattern of ref-erences.� Loop-like patterns of referencing may arise evenwhen no loop is explicitly programmed, e.g., incoroutine-like uses of bounded bu�ers, in memoryallocators, etc.� Loops are particularly relevant to LRU'sstrengths and weaknesses.The worst case for LRU: A too-large loop.LRU's technique for predicting which pages will betouched soon is quite simple: the time since the lasttouch to a block is used as a predictor of the time untilthe next touch.The bad cases for LRU's predictive strategy arewhen the time until the next touch to a block is neg-atively correlated with the time since the last touch,such that it systematically evicts blocks that will bereferenced soon, in preference to blocks that won't be.It is easy to construct a worst case for LRU and amemory of size m. Simply loop throughm+1 blocks ofmemory, touching each block once before returning totouch any block a second time. (For example, loopingthrough an array of block-sized data objects, readingone value out of each. It doesn't matter whether theitems are stored linearly in an array, however.) As longas more blocks than will �t in memory are touchedbetween touches to any given block, LRU will fault onevery memory reference, and always evict each blockjust before it is touched again|touching a cache-fullof other blocks will always evict every blocks that hasnot been touched in the meantime.

Notice that for this worst case, it doesn't matter ifLRU has m pages at its disposal, or just one, or any-thing in between. With one page, exactly the samething will happen, so the other m � 1 are wastedcaching the wrong blocks. It doesn't matter whetherblocks are evicted shortly before the next touch, or along time before it|either way, a miss will occur whenit is touched.This may seem like a fatal aw in LRU, since sim-ple loops are quite common in real programs, and infact we do believe this is signi�cant. However, mostloops do not touch this extremely awkward numberof blocks. For any given size of memory, most loopstouch either considerably fewer or considerably moreblocks than the memory will hold. In the case of\small" loops, where the looped-over data �t in mem-ory, LRU has no problem. All of the blocks will befaulted into memory once at the �rst iteration, andremain there for any number of iterations of the loop.For loops over very large amounts of data|muchmorethan fast memory will hold, any replacement policywill do fairly poorly, even an optimal one.LRU is competitive with optimal replacement.(Sort of.) The case of \large" loops is clearly bad,but it is signi�cant that for very large loops (muchlarger than the memory size) any replacement policywill do poorly. Consider a memory of size m, and aloop over 2m blocks. Even an optimal replacementpolicy will fault on all of the blocks during the �rstiteration, and it will fault on half of them at each it-eration thereafter. An optimal policy will essentiallypick m � 1 blocks to keep in cache from one iterationto the next, and use one block to cache each of the restbriey when it is touched. In essence, it will victimizehalf of the blocks at each iteration, evicting them im-mediately after use, for the bene�t of the other half,which it can then keep in memory inde�nitely.Because of this, LRU is said to be competitive withoptimal replacement within constant factors of spaceand time. In general, if we give LRU a constant factorof extra space, we can ensure that its fault rate is alsowithin a constant factor of optimal. For the exampleabove, if we give LRU a factor of 2 in memory, itwill not fault at all because the whole loop will �t inmemory. More generally, we can always \�x" LRUby giving it somewhat more memory, because the badcases for LRU in a larger memory are also rather badcases for optimal replacement in a somewhat smallermemory.18



This is reassuring to system designers|LRU maynot be perfect, but reasonably good performance (rela-tive to any possible replacement policy) can always beachieved by spending a \small" constant factor moreon memory.On the other hand, this technical notion of (space-time) competitiveness is small consolation to a userof an actual computer with a particular memory size,when a program loops over more data than will �tin memory. The competitive argument requires aconstant factor in space to achieve a time bound.For a given memory size, it provides no useful boundon how badly LRU may work compared to optimalreplacement|LRU may have a 100% miss rate in sit-uations where optimal would simply fault most of thedata in once and only fault occasionally thereafter.(Practically speaking, this may have very seriousconsequences for the cost of computers. Since LRU'sperformance may sometimes collapse in the face of asmall increase in working set size, it encourages com-puter owners to simply buy more RAM until theirworst-behaved program stops \thrashing." A commonmaxim is that \if it pages, it's broken." This is essen-tially a cost-maximizing phenomenon|the machinemust be able to handle the worst of the programs thatare run on it with any expectation of reasonable per-formance. The machine is loaded with enough RAMfor the worst case, because its performance cannot berelied on to degrade gracefully.)This raises the question of how often programs doloop over more data than will �t in memory, andhow important those loops are in the overall memory-referencing behavior of a program. Little is knownabout this.LRU and multiple looping phases. Most pro-grams' behavior is not dominated by a single loop.Even programs whose behavior consists primarily ofloops often do not have a single simple loop that dom-inates their performance. They may have a varietyof phases which are dominated by a simple loop each,but with di�erent-sized loops for each phase. Some ofthe phases may �t comfortably in memory and causeno problems. Other phases may loop over far moreblocks than will �t in memory, and be problematic forany replacement policy, still others are \just right," ofan in-between size where another policy might workmuch better.As in the case of a mix of whole programs consist-ing of a single loop each, a single program with a mix

of loops of varying sizes may interact well with LRUmost of the time, and average performance may beacceptable. Whether this is true often depends onwhether any loop is larger than main memory, and it-erates many times, causing a collapse of virtual mem-ory performance. (The same phenomenon can hap-pen at the level of cache memory for smaller loops, ofcourse, and slow a program down by a factor of sev-eral times. If it happens at the size relevant to virtualmemory however, the extremely long access times ofmagnetic disks are likely to cause a much more dra-matic performance degradation|perhaps slowing theprogram by a factor of 100 or 1000, or even more.)Spatial locality often helps in bad cases. Evenwithin a single program or phase dominated by a too-large loop, several other factors may come into play,making LRU's performance very bad but not nearlythe worst case. Spatial locality may help, and nestedloops may introduce many memory references thatLRU handles nicely.Spatial locality is often helpful, because a loop overa large number of words may touch a much smallernumber of blocks. In the case of an array stored con-tiguously in virtual memory, accesses to successive el-ements of an array are usually accesses to the samepage. If a page holds 1024 consecutive items of an ar-ray that is accessed sequentially, this may reduce themiss rate by three orders of magnitude. In e�ect, LRUwastes all but one of the block frames, but that oneframe (the most recently used one at any given time,not actually a particular frame) does an excellent jobof exploiting spatial locality.Because LRU systematically fails to exploit tem-poral locality for too-large loops, the miss rate maystill be very high|recall that a reasonable miss rateis roughly one in a million|and the program mayspend orders of magnitude more time paging than do-ing \real" computation. In some cases, this may beacceptable; if an infrequently-run program takes hoursor days to run instead of seconds or minutes, it maynot matter much if the results aren't needed until nextweek. In other cases, where the program in questionmust run at a reasonable speed, the only solution isto buy more memory to get acceptable performance.LRU and nested loops. LRU may do reasonablywell for nested loops, where the outer loop iteratesslowly and the inner ones iterate more quickly. (Here,it's important that the inner loops iterate over the19



same data repeatedly|if they iterate over di�erentdata, the locality will be much worse.) The blockstouched during the iterations of the inner loops maystay in fast memory between iterations, because theyare touched much more often that the blocks touchedonly by the outer (too-large) loop(s).In many cases, the inner loops do most of the workand generate far more memory references than theouter loops. In such cases, LRU may work well, butgenerally performance is still limited by the rate atwhich the outer loop(s) touch blocks that have beenuntouched for too long.Notice that LRU generally does the right thing forshort-term patterns in memory references|if pagesare touched repeatedly over the short term, they arenot evicted from memory. This is its great strength.The mistakes it makes are mostly with longer termpatterns, e.g., loops bigger than the memory size.All other things being equal, this is a good gen-eral strategy. If given a choice between systematicallymakingmistakes with respect to long-term patterns orwith respect to short-term patterns (and either kind ofmistake is equally expensive) then it's generally bet-ter to make mistakes on the long-term patterns. [ac-tually need to discuss skew to make this ar-gument; we happen to *know* that on aver-age, shorter-term patterns are more common.]Because long-term patterns don't recur as frequently,consistently making mistakes over the short termis more expensive|short-term events simply happenmore often. As we will see in discussing frequency-based replacement, neglecting this principle can leadto catastrophic performance collapse.2.6.3 LRU and other kinds of referencing be-havior[ stack-like (mostly LIFO), hot-cold, etc.][LRU works well for working sets that �tin cache. Works poorly for working setsthat don't quite �t, if referencing patterns aremostly queue-like, but works as well as can bedone for LIFO patterns.]2.6.4 Frequency-based ReplacementAn early competitor of LRU was frequency-based re-placement. The basic idea of frequency-based replace-ment is to keep track of how often di�erent pages aretouched, and evict those that are touched least often.The basic idea is that the most important pages are

the ones that are touched most often, so they shouldbe kept in the cache in preference to pages that aretouched less often.The simplest frequency-based replacement policy isLeast Frequently Used, or LFU. An LFU policy keepsa counter for each block in the cache, indicating howmany times it has been touched. When a block mustbe evicted, the on that has been touched the least ischosen.This seemingly reasonable idea has wide and per-sistent appeal, but is actually deeply awed, andfrequency-based replacement has performed poorlyand erratically in a variety of experiments. Becauseof this, it is not in general use. We will explore itsbehavior in some depth, however, for two reasons:� It demonstrates important issues. While LFUworks poorly, and this is well known, it is easyto introduce problems like LFU's when designingadaptive algorithms; it clearly demonstrates cer-tain characteristics that replacement policy de-signers must avoid.� Similar issues arise in other guises. While LFUis not a popular replacement policy, its problemsresurface in other contexts, particularly clusteringand prefetching policies. We believe that muchwork on clustering has been misguided, becauseresearchers in clustering have not understood thegeneral kind of problem that LFU demonstrates.Many clustering policies have problems similar toLFU's, which could be avoided. (This will bediscussed in a later section.)Recall that earlier we said that an optimal policyretains the blocks that will be needed soon, and evictsthe blocks that won't be. From the replacement pol-icy's point of view, all that matters to any particularreplacement decision is how soon each block will beneeded|the decision of how long to keep it in mem-ory beyond that is not urgent, because it can be madelater, independently of whether the block is evictedand faulted in again in the meantime.The next touch to each block is the one that matters,because at that point the replacement policy has nochoice but to ensure that it is in memory. If the blockwill only touched once, it must be in memory, just assurely as if it will be touched a million times.This is not to say that the pattern of pasttouches can't be used to predict the pattern of futuretouches|far from it. At any given time, however,20



that pattern is only informative if it can be used topredict the time until the next touch. In this light,keeping a count of the number of touches to each pageseems much less appealing|it only makes sense if thenumber of past touches to a page is very strongly cor-related with the time until the next single touch|andunfortunately, as experiments have shown, it isn't.LFU works well for some programs, but often ex-hibits extremely poor performance, for at least twoimportant reasons:� It doesn't distinguish between important andunimportant references in a timescale-relativeway.� It doesn't adapt quickly to changing patterns ofreference.LFU and complex (multi-frequency) patterns.Consider a program that touches block A a hundredtimes as often as block B. If the touches to these pagesare distributed evenly, either regularly or randomly,LFU will work quite well. The touch count for blockA will quickly rise well above the count for block B,and whenever there's a choice between them, blockB will be evicted. On average, that will be the rightdecision because block A is more likely to be touchednext.On the other hand, it is common that the touchesto blocks are not distributed evenly. Suppose thatblock A is touched 1000 times in quick succession ev-ery 10,000 time units, and block B is touched onceevery 1,000 time units. In that case, the bursts of1000 touches to block A have very di�erent implica-tions than the spacing between those bursts. Duringa burst, the time until the next touch is very short,but between the bursts, it is very long. Ideally, thereplacement policy should notice the di�erence, andnever evict block A during a burst of closely-spacedtouches. At any other time, though, it should preferto previct block A rather than B, because when blockA is idle, it's idle for a very long time.This is a very severe problem for LFU. Notice thatin this case, the count for page A stays very high rela-tive to the count for page B, and LFU will always pre-fer to evict B, when usually it should evict A. It maytherefore make the same mistake many, many times, iftouches to other pages force many evictions. It will bebattered by extra faults due to this mistake, and nevernotice that fact and adapt to avoid it. Because LFUis very prone to making serious and repeated mistakes,

its performance is hard to analyze, but it is generallyconsiderably worse than LRU and often dramaticallyworse. (It is not competitive with optimal.)LFU and large-scale phase behavior. LFU isalso prone to making serious and repeated mistakesdue to its inability to adapt quickly to programs' phasebehavior.For example, suppose some set of blocks is touchedvery often during the intitialization phase of a pro-gram, but not at all thereafter. Those blocks' touchcounts will go up rapidly for a while, and then sta-bilize and never come down again. If blocks touchedduring later phases are never touched as many times,the blocks used during intitialization will be e�ectively\pinned" in memory, wasting space that could be usedto cache the blocks relevant to the later phases. Theblocks used later in the program may be repeatedlyevicted and faulted on, because the blocks used dur-ing an earlier phase were touched so many times thatthey are di�cult to displace.Attempts to �x LFU. Many attempts have beenmade to salvage frequency-based replacement. Mostof them involve variants of one or both of these twotechniques:� Filtering out very short-term information. Herethe idea is that high-frequency information is mis-leading, so that repeated touches over very shortintervals should be ignored or given less weightthan touches over longer intervals.� Decreasing the weight given to older information.Here the idea is that simple LFU gives too muchweight to information about access patterns farin the past. By weighting recent informationmore heavily, frequency-based replacement can bemade to adapt more quickly. Blocks that weretouched many times far in the past do not stay\pinned" in memory at the expense of currently-active blocks.While each of these techniques is a step in the rightdirection, we believe that frequency-based replace-ment is fundamentally misguided|these amendmentssucceed almost precisely to the degree that the result-ing policy stops being frequency-based in the classicsense, and starts being guided by a fundamentally dif-ferent principle.21



The deep problem with frequency-based replace-ment is that its prediction function predicts the wrongthing. As the earlier discussion of optimal replace-ment shows, a prediction function's job is to predictthe time until the next touch, not the number of timesthat pattern will recur. Basing time predictions onthe number of times something has happened in thepast is simply a mistake, except to the degree that itenhances the reliability of the time prediction.We believe that a more direct approach isappropriate|rather than simply counting individualevents, it is crucial to detect the relevant patterns inevents. The number of recurrences of the pattern isinteresting only in that it bears on the reliability ofthe prediction.2.6.5 FIFOOne of the simplest replacement policies is FIFO, or\�rst-in, �rst-out" replacement. At a fault, FIFO al-ways evicts the block that has been in the cache forthe longest time. This simple policy works rather well,on average|it's miss rate is only about a third higherthan LRU's. [check this number|it might be20%, or 40%; I don't recall]FIFO works reasonably well because most touchesare to recently-touched blocks; FIFO ensures that ablock that has been faulted into the cache on will stayin cache for a considerable period|until after the evic-tion of all the blocks that had been there when it wasbrought in.Eventually, however, the block will be evicted, evenif it has been touched recently|FIFO only notices the�rst touch to a block after it is evicted, and ignoresall touches to the block while it is in cache. (A blockthat is touched once will therefore stay in cache justas long as a block that is touched frequently for theentire time it is cache resident.)This weakness is not as severe as it may seem|a block remains in cache long enough to avoid mostmisses due to short-term repeated touches. Once it isevicted, it may be faulted on again (once) and thenremain in cache for a considerable time. A block thatstays active for a very long period will therefore beevicted and faulted on repeatedly, but only occasion-ally.FIFO shares most of LRU's strength with respectto simple loops over data that will �t in cache|andits weakness if the data won't quite �t. For a simpleloop that �ts, FIFO will fault all of the blocks in, and

then faulting will stop and the blocks will stay cache-resident and cause no more misses.For a simple loop that does not �t, FIFO will evictthe page that has been in memory the longest, whichis the one which will be touched again soonest, guar-anteeing a high miss rate.FIFO and LRU make the same mistake for simpletoo-large loops because for such patterns there is lit-tle di�erence between the time of the �rst touch to acache-resident block (which FIFO uses) and the timeof the most recent touch (which LRU uses)|the blockis touched only briey at each iteration of the loop.2.6.6 RandomAnother simple replacement policy is random replace-ment; when a block must be evicted, it is chosen bysome pseudo-random procedure from among all blocksin the cache.Surprisingly, Random works reasonably well|likeFIFO, its miss rate is typically only about a thirdhigher than LRU's. [get actual number... what isit?] It is interesting to examine why this is true.First, consider the fact that most in-cache blockswill either be touched soon, or not for a relatively longtime|the distribution of times until next touches isvery heavily skewed.When a random policy evicts a block, it is fairlylikely that the block will not be touched soon. [ ifwe assume some skew in the distribution oftouches to blocks, that is... on average, it'llbe one of the less-touched blocks or medium-touched blocks, not a hot block. ] In that case,the vacated frame can be used for a considerable timebefore the block is faulted on again.Sometimes, however, random evicts a block whichwill be touched soon. In that case, the block is evictedbut then quickly faulted back into memory. Once ithas been faulted back into memory, it is unlikely to beevicted again soon|the randomness of eviction proba-bilistically guarantees that many other pages will usu-ally be evicted �rst.Random eviction is therefore probabilistically com-petitive with LRU for working sets that are have veryskewed reference patterns. [ Is this what I mean tosay? Has this been said somewhere? Is therea proof? ] For working sets that �t in the cache, itwill try evicting pages until it evicts one that is notactive; on average this takes very few tries. Once theinactive data have been faulted out, the working setis cache resident and faulting stops.22



For working sets that do not �t in the cache or donot have a heavily skew, the situation is more complex.If the working set �ts in RAM but accesses to thoseblocks are fairly evenly distributed, Randommay evictmany frequently-touched blocks, only to fault them inagain and try again, repeatedly.On the other hand, Random does not share LRU's(and FIFO's) severe problem with loops that are some-what too large to �t in the cache. By evicting pages atrandom|rather than the blocks that will be touchedsoonest due to the looping pattern|it ensures that asigni�cant number of looped-over blocks can remain inthe cache. Its tendency to evict some recently-touchedblocks comes in handy, allowing other blocks to stayin the cache until they are touched again.2.6.7 Loop-detectingThe very �rst virtual memory system|for the Manch-ester University ATLAS, later marketed by Ferranti|used an interesting loop detecting replacement policy[Fot]. The idea behind this policy is that loops forman important component of the referencing patterns ofmany programs, and that loops can be treated prop-erly by keying o� of periodic touches to pages. Un-fortunately, this policy did not work well, and wassupplanted by an LRU-like policy. Still, the idea itselfis quite interesting and a variant of it may work quitewell.We do not have detailed description of this algo-rithm, but it appears to have worked roughly as fol-lows: for each block, a record is kept of the timebetween previous touches, perhaps the last two de-tectable touches, as well as the time of the last touch.8If accesses are periodic, the time until the next touchto a block can be predicted by assuming that the in-terval between the last touch and the next one willbe the same as the time between the last touch andthe one before that. The di�erence between the timesof the two previous touches can be added to the timeuntil the next touch to predict the time of the nexttouch.It is interesting to consider the di�erence betweenthis kind of prediction and the predictions made byLRU. Consider the following pattern of touches to apage, where t denotes the time at which a replacementdecision must be made:8It is unclear to us what mechanismdetected this, or whetherit could detect all touches to a block. It is also unclear whetherit recorded only the last two touches, or some more complexinformation.

* * *time: -29 -19 -9 tNote that LRU will predict that the time until thenext touch is relatively long|the same as the timesince the last touch: it's view of the past is simply\reected" around the present (t) to give an estimateof the future. Since the block was last touched at timet � 9, LRU predicts it will be touched again at timet+ 9.The ATLAS policy, on the other hand, will predictthat the block will be touched again much sooner|itrecognizes the interval between touches (10 units) andsees that another interval is \almost up," so anothertouch to the page is due soon, at time t+ 1.This seems like a good principle, all other thingsbeing equal, but there are several subtleties.In a replacement policy, some pages are evicted sothat other pages can be kept in the cache; therefore,some pages must be evicted early, relative to whatLRU would do, so that others can be retained longerbecause touches to them are expected soon.The ATLAS policy used its predictions to evictpages early by noticing when a loop had stopped. Thatis, it noticed when its expectation that a page wouldbe touched again was violated|if it expected a touchto a page at (roughly) a particular time, it was as-sumed that the loop operating on that page had ter-minated and that the page would not be touched againsoon.Unfortunately, memory referencing behavior oftenconsists of more than simple loops, and this heuristiccan easily be foiled. Consider a simple case of nestedloops:*** *** ***time: tIn this case, the inner loop has stopped by time t,but the outer loop (responsible for the repetition of theinner-loop touches) may not have. If the time betweenthe last two touches is used to predict the next twotouches, it appears that \the loop has stopped" andthe page is no longer active. If the outer loop has notstopped, however, it is very likely that the block willbe touched again soon|when the next iteration of theouter loop returns to it.The problem with the ATLAS replacement policyis that it is not properly timescale relative. The rele-vant periodicity here is the not the periodicity of the23



inner loop, but the periodicity of the outer loop. Veryshort-duration periodicities do not matter much; thestructure of the bursts of touches due to the innerloops is not particularly important. What is crucial isthe pattern of touches at a timescale large enough tobe important to replacement decisions.We have oversimpli�ed somewhat here, in that wehave assumed that memory is large enough that it maybe reasonable to hold this block in memory betweenthe iterations of the outer loop. If the iteration in-terval is too large, however, it may be better to evictthe page early|the space reclaimed can be used forcaching something that will be touched again sooner.In that case, it is better to pay the cost of faultingthe block in again later, to avoid more faults in themeantime.This example illustrates [...blah blah ...timescalerelativity... not too big, not too small, justright...]2.6.8 Gap-based replacement[discuss [Quo94], Phalke, WWOS-IV paper]2.6.9 OPT or MIN2.7 Methodological Issues in Replace-ment Policies2.8 Toward a Theory of Replacement2.8.1 Block Histories and Adaptation2.8.2 Phase Behavior, Aggregate LocalityProperties, and Adaptation3 PrefetchingWhile many memory hierarchies rely exclusively ondemand faulting|waiting until blocks are touched totransfer them to fast memory|some use prefetching,initiating the transfer of some blocks ahead of time.The most common general-purpose prefetchingstrategy is sequential (address-order) prefetching;when a block is faulted on, the following block in ad-dress order is also requested. For example, if blocknumber 316 is faulted on, block number 317 is fetchedas well. More than one block may be requested, per-haps the next two or three blocks.More generally, a prefetching policy incorporates aprefetch prediction function, keyed to some aspect ofprogram behavior, and issues requests for blocks based

on that prediction. Like a replacement policy, theprefetching policy keys o� of observable behavior ofthe program (such as touches to blocks, or faults onnon-resident blocks) and uses that behavior to predictfuture behavior|touches to nonresident blocks thatmay happen soon.3.1 Prefetching vs. Large Blocks andClusteringAn alternative to prefetching is to cluster (group)blocks or language-level data objects together inslower memory, so that they can all be fetched quicklyby a simple \non-prefetching" policy, perhaps usinglarger blocks. The idea here is to get the e�ect ofprefetching using a simple demand fetch policy, by ar-ranging data near each other in memory and fetchinglarger units. That is, grouping related data togethercan improve spatial locality, to get much of the ben-e�t of prefetching using a standard demand-fetchingpolicy.Looked at another way, the normal use of largeblocks can be seen as a kind of crude prefetching|after all, \extra" data are fetched when something isfaulted on, in the hope that it will also be useful soon.(Because of this, interpretation of experimental re-sults is not as easy as it might seem, as will be ex-plained later.)Clustering will be discussed later, in Section 4.3.2 Programmer-directed vs. Compi-ler-directed vs. Dynamically-pre-dicted Automatic PrefetchingIn this paper, we focus on prefetch schemes which pre-dict future access patterns dynamically based on pastaccess patterns. Other approaches are possible, how-ever, using information about programs from othersources. Programmers may supply directives sayingwhen to prefetch data, based on knowledge of the al-gorithms used in the program. In some cases, compil-ers may be able to infer this information, and generatecode that issues prefetches, rather than relying on thememory hierarchy itself to make the predictions.Each of these approaches has merit, but each is se-riously limited, as well.3.2.1 Explicit DirectivesIn general, programmers are not good at knowingwhat to prefetch, because few programmers under-24



stand issues in locality of reference su�ciently well.Programmers are likely to make mistakes, and makeperformance worse, rather than better, if they are notknowledgeable and careful.[ blah blah... need to give programmers areasonable model, so they can say what theyknow and let the prefetcher evaluate it and de-cide what to do, rather than having them sim-ply say what to fetch: similar to overlays-vs-VM; the runtime system has information thatthe programmer doesn't, e.g. memory size, sothe programmer shouldn't overcommit at pro-gramming time.]3.2.2 Compiler-directed Prefetching[ compiler-directed prefetching works best ei-ther for very short-term access patterns|upto about a hundred instruction cycles ahead|or for extremely regular patterns, like blockedarrays. Doesn't work well for anything thatcan't be determined statically by relatively lo-cal analyses of the source program... compilersjust aren't good at the \big picture," but run-time systems can be... mix of both is likelyto be best... fwd. ref striping and blocking inclustering section. ]3.2.3 Dynamic Prediction[why dynamic prediction is necessary... regu-larities in data that aren't known at compiletime, nonlocal properties that are di�cult forcompilers to infer, etc. ]3.3 Block size and Fetch PolicyWhen considering the use of prefetching, it is im-portant to keep in mind that normal demand fetch-ing using moderate block sizes already shares impor-tant characteristics with prefetching|some data arefetched \speculatively," because they are near the de-manded data. A prefetching policy therefore can havethree di�erent kinds of e�ects:� increasing the fetch size, by fetching more blocksat a time,� increasing exibility in fetch size, by allowingmore blocks to be fetched at some times, but notat others,

� increasing exibility of what is fetched, and� increasing exibility of eviction, by allowing pre-fetched blocks to be evicted independently offaulted-on blocks.3.3.1 E�ects of Increasing the Fetch SizeWhen comparing prefetching and demand fetchingpolicies, it is therefore important to separate out thesee�ects. If a demand-fetching policy and a prefetchingpolicy are compared using the same block size, the re-sults may misleadingly favor one or the other simplybecause a given program may work best with a par-ticular fetch size.Consider a program with fairly good spatial local-ity, such that for a particular memory size of interest,say 4 MB, the optimal fetch size is 8KB. If we justcompare a simple one-block-lookahead policy and de-mand paging, using 4 KB virtual memory pages inboth cases, the prefetching policy will naturally lookbetter: it exploits spatial locality and can fetch thesame amount of data with half as many seeks.What this seemingly head-to-head comparison doesnot tell us is whether the bene�t is due to the dif-ferences between demand fetching and prefetching, orjust due to a larger fetch size. It is not unlikely thatnearly all of the bene�t from prefetching would alsoresult from using demand fetching with pages that area larger size, say 8 KB.To really be able to compare these two policies, wemust at least compare prefetching using 4 KB pages todemand fetching using both 4 KB and 8 KB pages. Aone-block-lookahead policy may sometimes fetch onepage, and sometimes two, so we should bracket itsaverage fetch size in comparing it to a demand fetchpolicy. If prefetching does not work better in bothcases, the apparent advantage of prefetching in onecase may not be robust. It may simply be due to thefact that the tested program has higher spatial localitythan the block size can fully exploit, and can bene�tfrom an increase in fetch size in either way.In trying to evaluate prefetching policies in a gen-eral way|as opposed to making assumptions aboutthe block size|it is therefore necessary to �nd a fairbaseline. One good baseline is the performance ofdemand fetching with thedemand-fetch-optimal blocksize.9 For each test program and each particular mem-ory size used, the page size should be adjusted to min-9We invented this term for this paper. [pointers to priorstatements of this concept would be appreciated]25



imize total (latency + transfer) costs for the demandfetching scheme.Then the prefetching policy should be used with twoor more block sizes that bracket this size; if it worksbetter than demand fetching with the same block size,that means that the prefetch policy does not undulyincrease transfer costs when it increases the fetch size.If prefetching works better in both cases, then wecan conclude that prefetching has de�nite advantagesover demand fetching, above and beyond simply in-creasing the fetch size.Even if a particular prefetching policy does notrobustly improve performance over a range of blocksizes, caution should be exercised in interpreting this\negative" result. There are many possible variationsin prefetching policies, and a simple negative resultdoes not necessarily mean that \prefetching doesn'twork." It means that further study is required, todetermine why the tested policy doesn't work, andwhether the problem can is fundamental, or can eas-ily be �xed.3.3.2 E�ects of Flexibility in Fetch SizeOne advantage of prefetching is that in principle itshould be possible to adjust the fetch size dynami-cally, by fetching more or fewer pages at a time, toadapt to particular workloads' spatial locality charac-teristics. Prefetching may therefore be able to make amemory hierarchy's performance more robust, by ad-justing the fetch size to a particular workload|ratherthan just picking a fetch size expected to work well\on average." (This adaptation might be dynamic,during a program run, or it might be based on entireexecutions of a program, or it might be based on theoverall job mix a computer faces.)This is a very complex and poorly understood topic,however, and most prefetching policies don't seem tomake any (intentional) attempt to do this.To properly evaluate this e�ect, it is necessary to�nd a \representative" set of programs|which is avery di�cult subject|and �nd a set of \reasonable"block sizes, such as the demand-fetch optimal blocksize for the entire test suite. If, on average, prefetch-ing works better than demand fetching for �xed blocksizes and a range of programs, it demonstrates thebene�ts of prefetching per se.

3.3.3 Increasing Flexibility of What isFetched.One advantage of some prefetching schemes is thatthey may fetch di�erent data than would be fetchedsimply by having a large block size.[ blah blah... often harder than itlooks... sequential prefetching is usuallycheaper than random access prefetching|especially for disks, but also for silicon memo-ries to a lesser degree because of the way mem-ory units work|fetching blocks in same row ofthe 2D memory array is faster than fetchingblocks in a di�erent row, because an enire rowis usually latched and can be read from with-out reading the row from the main array again.]3.3.4 Increasing Flexibility of EvictionA related advantage of prefetching may be to allowprefetched data to be evicted independently of datathat are actually touched. For example, consider ademand-fetching memory that fetches 8KB blocks,and a sequential prefetching memory that fetches 4KBblocks using one-block lookahead. These policies arecomparable in terms of what they fetch, but may treatdata very di�erently after they are fetched. Suppose,for example, that only one half of each 8KB page isactually touched. In that case, the demand-fetchingmemory must cache 8KB blocks, even if half of theblock is never touched.In contrast, the prefetching memory can evict the4KB prefetched block that goes untouched, whilekeeping the 4KB block that was actually touched inmemory.Cutting losses due to bad prefetches. A simpleexample is when the demand-fetched block is touchedrepeatedly over a long period of time, and the pre-fetched block is never touched at all. Eventually, theprefetched block will be evicted, and the demand-fetched block can stay in the cache inde�nitely, aslong as it keeps being touched often enough. Thus aprefetching memory has the ability to \cut its losses"in the face of mistakes by its prefetch predictor.This raises an interesting and poorly understoodquestion of how long prefetched blocks should be keptin memory in hopes that they will be touched soon.Perhaps prefetched blocks that aren't touched verysoon after they are fetched should be evicted, to avoid26



polluting the cache. But then, perhaps not|it maybe that a prefetch which doesn't pay o� immediatelyis still likely to be good, because it will be touchedsoon enough. Perhaps unsurprisingly, the questionof whether a block will be touched \soon enough" istimescale-relative. If the cache is very small, a pre-fetch may have to pay o� very soon to pay o� at all,because the memory occupied by the prefetched blockcould be put to better use. If the cache is large, itis not too expensive to keep the block around for alonger while.The prefetch time-to-payo� distribution is relevantto this question. If it is very heavily skewed towardshort payo� intervals, then it is worthwhile to evictprefetched blocks fairly quickly if they aren't touched.For example, it may be that prefetches usually payo� very soon or not at all. In that case, evicting pre-fetched blocks if they go untouched for a short periodwill cut losses without reducing prefetch performanceby much. The successful prefetches will still be suc-cessful, and the unsuccessful ones won't waste muchcache space.If the time-to-payo� distribution is less heavilyskewed, it may be worthwhile to keep blocks in mem-ory for a longer time if the memory is large, but ashorter time if the memory is small.(If the distribution is not signi�cantly skewed,prefetching may simply not be worthwhile; prefetchedblocks are likely to either be evicted before actuallybeing touched, in which case the prefetch did no goodand some harm, or the prefetched blocks may betouched while in memory, but only after they have in-directly caused more misses by occupying blocks thatcould have been put to better use in the meantime.)Unfortunately, little is known about skew in thetime-to-payo� distribution; this issue has not gener-ally been studied directly. Most studies simply presentbottom-line performance results for entire policies,without separating out the reasons for their successor failure.Independent eviction. Prefetching may be advan-tageous relative to fetching larger blocks even whenboth blocks are touched, so that the prefetch is suc-cessful, but one block remains active longer than an-other. If we simply used demand fetching with blockstwice as large, the resulting large block would be alarge unit that must be either kept resident or evicted.With prefetching, it is possible to evict either block in-dependently of the other, if it does not keep getting

touched over as long a period.3.3.5 Fetch Size vs. Overall Memory Size,and Timescale Relativity[ This section is now somewhat redundant...should it be moved up, or should part of thestu� in the previous section be moved afterthis?]Another consideration in choosing a fetch size is thetotal size of the memory. For small memories, smallblocks may be especially desirable, because a smallmemory size e�ectively reduces spatial locality.Recall that spatial locality is really a spatio-temporal phenomenon|fetching a larger amount ofdata at a miss is good if the \extra" data will betouched \soon." But how soon is soon? That is, whendoes it pay o� to fetch extra data, and when is it bet-ter not to, and fetch the data (in smaller blocks) asneeded?The answer to this depends on three things:� how soon the extra data will be touched (if atall), and� whether the memory it will occupy could be putto better use in the meantime,� whether su�cient bandwidth is available to sat-isfy the prefetch requests without saturating thecommunications channel (bus or disk adapter).In the case of a small cache, space is typicallyquite precious|only a small amount of very-recently-accessed data can be held in the cache, and items typ-ically don't stay in the cache very long. Bringing any-thing into the cache requires evicting something elsethat is very likely to be accessed fairly soon. In gen-eral, bringing the extra data into the cache will pay o�only if that extra data is touched sooner than whateverdata it replaces in the cache.For a large cache, this problem is less severe. Anitem that is evicted usually hasn't been touched for along time, and is unlikely to be touched again soon;evicting it to make room for extra data brought in by afetch is rather less dangerous. (If the extra data still gountouched while they are in the cache, however, theywill of course tend to pollute the cache and increasethe miss rate.)Notice that whether the data go untouched istimescale-relative. For a large cache that holds blocksfor a very long time, the extra data may go untouched27



for a considerable period, but then be touched whilein the cache, saving a miss. For a smaller cache, thesame data may already be evicted by the time theyare touched, causing misses|after uselessly wastingspace in the cache, and likely causing misses on otheritems that could have been successfully cached.Luckily, such considerations are usually only criti-cal for very small memories, which have relatively fewblock frames. Most modern memory hierarchies haveseveral hundred or even several thousand block framesat each level, so the choice of block size is more de-pendent on transfer and latency times and the cost ofmaintaining address translation mappings. (This maynot be true for small �rst-level caches, or for very smallcaches used in the implementation of CPU's, such astranslation lookaside bu�ers, etc.)3.4 Overlap and Bandwidth Limita-tionsTwo important factors can decrease the e�ectivenessof prefetching. One is a lack of overlap between fetch-ing data and normal program execution|if a blockis not requested far enough ahead of time, the pro-gram may demand the block before it is available,and have to wait for it despite the fact that it wasprefetched. Another is a lack of bandwidth; if fetches(including prefetches) occur too closely together, theremay not be enough communication bandwidth be-tween fast and slow memory, and the limiting factorof performance will be the rate at which the data canbe transferred.3.4.1 OverlapFor a prefetch to be e�ective, the prefetch must occurfar enough in advance of the program's actual accessto the requested block. If a prefetch is initiated, butthe program immediately attempts to access the data,the program must wait for the block almost as long asif it had simply faulted on the block.The overlap ratio is the fraction of the fetchtime that is successfully overlapped with othercomputation|the program's execution of instructionsthat operate on registers or data in the cache, beforeactually attempting to access the prefetched data.The overlap ratio depends on features of the actualmemory hierarchy in question, particularly the latencyof misses. It is therefore a measure of the potentiale�ectiveness of prefetching for a memory system withparticular parameters. If the latencies are very high,

the overlap ratio is likely to be low|a smaller fractionof the latency can be masked by prefetching ahead oftime. (This will be discussed in detail below.)A more general measure of the performanceof a prefetch policy is the prefetch time-to-payo�distribution.10 This is the distribution of times be-tween the initiation of prefetches and actual touchesto prefetched blocks; it just says how many prefetchpredictions occur how far in advance of actual touchesto the predicted blocks. This distribution can be inter-preted relative to systems with di�erent miss latencies.For example, if a prefetch prediction occurs 20 in-struction cycles in advance, and we assume that a pre-fetch is immediately initiated, then it may be an en-tirely successful prefetch if the miss latency is less than20 instruction cycles|or a partly e�ective predictionif the prefetch is 40 instruction cycles, in which casewe may be able to reduce the cost of a miss to 20instruction cycles by prefetching 20 cycles in advance.Notice, however, that the prefetch time-to-payo�distribution is not generally independent of the mem-ory size or block size, because whether a prefetch isissued at all generally depends on whether a block ismemory resident. (For a small memory, it may notbe resident, and a prefetch may be issued; for a largememory, it may be resident and no prefetch is neces-sary.)The prefetch time-to-payo� distribution is enlight-ening in two ways. The �rst is obviously that it tells,for any given miss latency, how much latency costmay be masked by prefetching. The second is thatit tells how long memory may be occupied by pre-fetched pages waiting to be touched. If prefetchedpages are touched before they are evicted, they maybe \successful," but if they go untouched for a longtime, they may also incur a cost by tying up memory,in e�ect polluting the cache.All other things being equal, the best prefetch pre-dictor would prefetch just far enough in advance tomask the maximum amount of latency cost, but notso far in advance that prefetched pages unnecessar-ily tie up cache space that could be put to betteruse. The ideal prefetch time-to-payo� distribution ismodal, with a mode at a point just beyond the actualmiss latency. Blocks will be fetched \just in time" toget the maximumbene�t in avoiding stalls by overlap-ping fetching with computation|but no so far ahead10We made up this term; it seems to us an obvious idea, andmay be used elsewhere. Pointers to prior use of this conceptwould be welcome.28



as to squander fast memory.Even this is something of an oversimpli�cation,however. It assumes that if a prefetch is initiated farenough in advance to mask the latency, it will actuallydo so. This may not be correct, however, if prefetchesare clustered too closely together in time.3.4.2 Bandwidth LimitationsEven if prefetches are issued \far enough" in advanceto mask latency, there may be problems when toomany prefetches are issued in quick succession. Ratherthan latency being the bottleneck bandwidth may be-come the bottleneck.Suppose, for example, that the prefetch predictormakes two predictions at successive instruction cycles,each correctly predicting a touch to a di�erent block,20 cycles in advance. If the miss latency cost is 20cycles, including 10 cycles for latency and 10 cycles fortransfer, then only the �rst prefetch will be entirelysuccessful|the second prefetch will have to wait 10cycles for the �rst one to �nish, before the bus becomesavailable again to transfer the block.If more than two prefetches occur in quick succes-sion, this problemmaybe exacerbated. At some point,the bus bandwidth becomes saturated, and prefetchescan only be satis�ed as fast as blocks can be trans-ferred. At this point, the problem is really that theresimply isn't enough bandwidth to satisfy the pro-grams' needs for data. The only way to solve thisproblem without increasing the available bandwidth isto space the prefetch predictions out over more time.If a program touches a lot of memory over a short pe-riod of time, prefetches may have to occur very far inadvance to avoid bandwidth limitations. In general,this is quite di�cult.This issue has not been studied in any depth. Insome cases, detailed simulation studies have shownprefetching policies to be ine�ective, and the con-clusion has been drawn that there was not enoughoverlap. We believe that in at least some of thesecases, overlap may not have been the problem|unrecognized bandwidth limitations may have beenthe bottleneck. For a given memory system, it doesn'tmatter much which is occuring, because either way thesystem runs slowly. In terms of memory hierarchy de-sign, however, the di�erence is crucial|rather thansuggesting that prefetching doesn't work, it may sug-gest that bandwidth limitations are more importantthan previously realized.

3.5 Prefetch-always vs. DemandPrefetching (Prefetch-on-miss)Prefetching policies are often categorized by whetherprefetches only occur at actual misses, or may occurat any time, whether a miss occurs or not. In high-speed silicon cache memories, each has its advantages.In virtual memory systems, on the other hand, usuallyprefetch-on-miss makes more sense.The reason for this is that latencies in virtual mem-ory systems are huge, and the overlap ratios are cor-respondingly tiny, but another trick can be used toe�ectively increase overlap for some prefetch policies.Rather than overlapping normal program executionwith prefetching, it is possible to overlap two fetches,because of the peculiar characteristics of disk accesstimes.At this point, it is important to note that disks arenot really \random access" devices, in the sense thatmain and cache memories are. The cost of accessing ablock is very strongly dependent on which blocks havejust been accessed. In particular, accessing blocks thatare widely separated on the disk generally incurs aseek|the read head must be repositioned|and of-ten a signi�cant cost in rotational latency. In con-trast, reads of sequential disk blocks are often vastlycheaper|once a block has been read, reading the nextblock is much, much less expensive. Reading a randomblock costs a seek and rotational latency, but readingthe following block simply requires waiting for it topass under the read head.Because disk block access times are far from uni-form, some prefetching policies are far, far cheaperthan others. If the block we want to prefetch hap-pens to be the next block on the disk, the read headis already in the right position, and all we have to dois continue reading. Transferring an extra block mayonly take about a millisecond, while the block passesunder the read head, rather than taking several mil-liseconds to seek to another track and wait for thedesired block to come under the read head.The most common kind of prefetching policy fordisks is therefore sequential prefetching of disk blocks.When a disk read occurs, the prefetch policy simplyrequests the next block on the disk, too.Rather than overlapping computation with I/O,this e�ectively overlaps the latencies of multiple I/Ooperations: in e�ect, we combine the seeks for multi-ple blocks into one, and the additional \seeks" are free.For the extra blocks, only the transfer cost remains.[ this happens in silicon memories as well,29



but to a less dramatic degree, because of rowlatching in 2D memory units... ]3.6 Replacement Policy for PrefetchedBlocks[how long to keep prefetched blocks? Prefetchtime-to-payo� relative to replacement interval][added stu� to earlier section about this...elaborate here, or bag it?]4 Clustering to Improve Spa-tial LocalityAn alternative to conventional prefetching is cluster-ing, which is the grouping of related data objects orblocks within larger blocks to improve spatial locality.The best-known kind of clustering is grouping of dataobjects such as records within virtual memorypages ordisk blocks. It is also possible to group smaller blockswithin larger units relevant to slower memory, such asgrouping several virtual memory pages within largerunits of disk transfer to improve paging performance.By grouping related data, spatial locality can be im-proved so that normal demand fetching or sequentialprefetching works better. This is especially appeal-ing in reducing disk seeks, since disk latencies are sohigh that overlaps are usually low, and nonsequentialprefetching is unlikely to yield signi�cant bene�ts.4.1 The Ubiquity of ClusteringWhile clustering may seem unusual, it actually is not.It arises in obvious guises in systems such as object-oriented databases, but in less obvious guises in vir-tual memory systems, �le systems, memory allocatorsand garbage collectors, and compilers and linkers. Ingeneral, any mechanism that allocates storage (or ar-ranges how data are stored) performs clustering, in-tentionally or not, because it decides which items gowhere. Many such mechanisms are intentionally de-signed to cluster things according to some principle orother, but some are not|the fact that they performclustering goes unrecognized.Many virtual memory systems group pages togetherdynamically during paging, writing out groups ofpages together. This is usually not recognized as clus-tering in the traditional sense, but this mechanism

could be exploited to improve spatial locality if donewell.Most �le systems perform some form of intentionalclustering, if only to keep �les stored mostly se-quentially to optimize sequential reads and/or writes.Many also cluster �le metadata (such as directory in-formation) so that it can be accessed without fetch-ing the contents of �les. Log-structured �le systems[RO91] provide tremendous exibility for clustering,although their potential has hardly been explored.(Work to date has concentrated primarily on decreas-ing the cost of writes, or of avoiding fragmentationof the disk, but an LFS's ability to store any dataanywhere on the disk opens up many possibilities forimproving spatial locality, reducing read costs as well[SKW92].)Conventional memory allocators (like C's malloc()and free()) also implicitlyperform an important kindof clustering, simply by choosing where in memory toput objects when they are initially allocated. A goodunderstanding of the principles of clustering could leadto the design of better allocation algorithms with im-proved spatial locality, or to better choices among themany available allocator algorithms [WJNB95].Copying garbage collectors [Wil] perform clusteringat each garbage collection, grouping objects accord-ing to the reachability traversal by which the collectoridenti�es the live objects.Compilers and linkers perform clustering of programcode and data. A compiler groups procedures togetherin some order, often the order that they are declaredin a source �le. A linker groups compiled modulestogether into executable �les, arranging larger unitsinto an order that will be reected in memory whenthe program is loaded.4.2 A Uni�ed ViewClustering is poorly understood, perhaps even morepoorly than prefetching. We believe that the issuesin clustering are very similar to the issues in prefetch-ing, and that this point has generally been overlooked.Issues of timescale relativity have not generally beenaddressed. A wide variety of clustering techniques hasbeen used in various systems and in various simulationstudies.The literature is incoherent; some strategies havebeen tried in some contexts (such as copying garbagecollectors), and others in other contexts (such asobject-oriented databases), but few techniques have30



been broadly applied. Some techniques have only beenexperimentally evaluated using synthetic data, which(we will argue) is unsound.We believe that research in this \area" has beenhampered by the fact that workers in clustering arespread through several di�erent technical communi-ties (operating systems, programming languages, databases, etc.) and seldom read or criticize work in re-lated areas. A general model of clustering has notbeen adopted or validated, and relevant work in re-lated areas is frequently overlooked.In this section, we introduce a new model of theclustering problem, focusing on issues of timescale rel-ativity and the satisfaction of multiple clustering goalsfor varying access patterns. Some of these ideas areimplicit in some prior work, but have not been fullydeveloped and are not widespread. There has been nouni�ed presentation that clearly de�nes the clusteringproblem, and important issues have usually been over-looked in most of the mainstream clustering literature.After presenting our intuitive model of the cluster-ing problem, we then survey various basic kinds ofclustering techniques, and applications of those tech-niques to particular kinds of systems.4.3 Goals of ClusteringOne goal of clustering is clearly to group related datatogether, so that fetching large blocks is e�ective; afault on an item within a large block should be agood predictor that other items (data objects suchas records, or small blocks) in the same block will betouched \soon." This corresponds to prefetching inthat good clustering, like prefetching, can reduce misscosts directly.On closer examination, however, it is clear thatother issues come up in clustering, as they do inprefetching, but in subtly di�erent ways.In some kinds of clustering, like the grouping ofsmall data objects within virtual memory pages ina conventional memory hierarchy, individual objectscannot be evicted independently, as prefetched blockscan. We will call this a simple clustering scheme. Asimple clustering scheme cannot \cut its losses" theway a prefetching scheme can, by evicting prefetcheditems early if they are not actually touched, or if theyremain active for di�erent amounts of time after beingloaded into fast memory.A good prediction function may therefore be morecritical for simple clustering than for traditional

prefetching|ideally, the clustering policy shouldnever have to cut its losses, meaning that the items ina block should always be accessed together, not justfetched together and soon touched. If it ever happensthat some items in a block are touched at very dif-ferent times than other items, that implies that someitems will have to be kept in memory unnecessarily,and waste space.The real goals of clustering are therefore:� To together group items that are accessed to-gether, to improve the e�ectiveness of simple fetchpolicies with a large fetch size.� To separate items that are accessed di�erently, sothat accesses to some objects do not force othersinto memory, or force them to stay in memory,polluting the cache.These two goals can be in conict. If items are some-times accessed together, but sometimes not, shouldthey be clustered together in a block, or not? In gen-eral, this seems like a hard problem, and one thatdepends on timescale relativity in subtle ways. Luck-ily, timescale relativity also comes to the rescue, andshows that it is not usually as hard as it might seemat �rst.To achieve good prefetching, we need two things:� A good prediction function, that predicts whichobjects will be accessed together with a fair de-gree of reliability, and� A good strategy for clustering, based on that pre-diction function, which will minimize wasted I/Oand cache space usage.We will address the second issue �rst. For the mo-ment, assume that we have a magical prediction func-tion that reliably predicts actual access patterns, andwe are trying to come up with a good clustering.This is actually a fairly good approximation of someclustering problems, such as the o�ine grouping ofprogram code and data based on pro�le informationderived from traces of actual program runs. (In sucha situation, the prediction function just predicts thatfuture access patterns will strongly resemble those ofthe training runs; this prediction may not be entirelyvalid, but it is often the best available information.)31



4.3.1 Timescale Relativity in ClusteringTo begin with, we must have a timescale-relative no-tion of what it means for items to be accessed \to-gether." For any given memory size and miss cost,\together" means within a period of time that is com-parable to the timescale of cache replacement.For example, for a small high-speed cache memory,blocks may be considered to be accessed \together" iftouches to them occur within a few thousand instruc-tion cycles of each other. If they are touched a mil-lion instruction cycles apart, they probably shouldn'tbe considered to be accessed together, and clusteredtogether, because that would amount to issuing a pre-fetch prediction far in advance of the actual touch:bringing the predicted item into fast memory at thatpoint is likely to waste space, and may do no goodat all, because the block may be evicted before thepredicted item is touched.On the other hand, for the purposes of clusteringvirtual memory pages, the very same access patternmay be interpreted as meaning that the items are ac-cessed \together." A di�erence of a million instruc-tions is small at the timescale at which virtual mem-ories operate|fetching things a millisecond sooner orlater makes essentially no di�erence to the e�ective-ness of prefetching. What matters is whether the datawill be accessed \soon" on a timescale that is usuallyseconds or minutes, and may be longer. (Keep in mindthat a normal virtual memory has several thousandpages, and can only fetch or evict a hundred or so persecond, even when it is completely I/O-bound.11)While the issue of timescale relativity complicatesour analysis slightly, it actually makes the real prob-lem easier|it means that for any given memory con-�guration, we can ignore most of the informationabout the access patterns. For a small memory, wecan ignore large-scale patterns, and just focus on av-eraged short-term statistics. For a large memory, wecan ignore short-term patterns.For the time being, assume that we are talk-ing about clustering objects into pages for a simpledemand-paged virtual memory system. In this case,we need to group together objects that are typicallyaccessed within (roughly) a few seconds of each other.For any reasonable size of memory, an important11We have oversimpli�ed slightly here, in a way that will berecti�ed later. The relevant measure of time is not wall-clocktime or CPU time; it is relative to the number of blocks touched.Thus two items are touched \together" if the number of otherblocks touched in between is small relative to the memory size.

point to notice is that it is not important to groupparticular pairs of related objects into the same page.For example, suppose we have several objects, A, B,C, and D, which are always accessed together and inthat order when any of them are accessed. Supposethat we can �t two of them into a block. We might dothe obvious thing, and group A and B together in oneblock, and C and D together in another. This wouldclearly be a good clustering.On the other hand, we could also put A and D to-gether in one block and B and C together in another.Either way, when we access the items in order, wewill incur two faults, and we will bring them all intomemory very quickly. It doesn't really matter muchhow they are grouped into pages, as long as the set ofitems that are accessed together is grouped into a setof blocks.Unless the set of pages is very large, we can assignthe items to blocks in any way we like with very littledi�erence in performance.How large is a large set? That is, how much freedomdo we really have? Consider the fact that most levelsof a memory hierarchy usually have several hundred,or more likely several thousand blocks. Splitting agroup of closely related objects across several pagesmay cost essentially nothing|a few pages of data maybe fetched slightly earlier than necessary, but if thoseobjects are also touched reasonably soon, it doesn'tmatter.Consider a more realistic example, where we havea few thousand items, known typically to be accessedtogether, which we must cluster into a hundred blocks.In the worst case|if we assign the set of items intothe set of blocks in the worst possible way|we willwaste less than a hundred blocks by \prefetching"some items earlier than necessary. For a cache withthousands of block frames, this is unlikely to make asign�cant di�erence in cache performance; we'll wasteat most a few percent of our cache space. Equallyimportant, if the items are known to be accessed atroughly the same time, we'll waste that space verybriey|just until we get around to touching the \pre-fetched" items.As long as we know that the set of items will be ac-cessed at roughly the same time, and the set is smallrelative to the size of memory, how we group partic-ular objects into particular pages is almost irrelevant.The \prefetching" due to clustering will be successful,because the \extra" objects in faulted on pages willbe touched fairly soon.32



This means that we have considerable leeway ingrouping of objects that are accessed together|weneed not focus on grouping closely related pairs of ob-jects into single pages, or even closely-related smallgroups of objects onto a few pages. That's a goodthing, because we must deal with items that are notalways accessed together, and try not to group theminto the same blocks.4.3.2 Keeping Semi-together Items Semi-to-getherSo far, we have assumed that we are clustering to-gether items that are known to always be accessedtogether, if at all. This is only half the problem. Theother problem is keeping items that are sometimes ac-cessed di�erently apart. We should avoid groupingitems in the same page if some of them may be ac-cessed without the others being accessed at roughlythe same time. (Again, the \same time" is relativeto the size of memory, and the information in needn'tbe precise in general. For virtual memories, it can bevery coarse.)For example, suppose we re�ne our example of a fewthousand data items being clustered into a hundredblocks. Let's say that 20 blocks' worth of those itemsare always accessed if any of them are, but the other60 blocks' worth are sometimes not accessed at thosetimes. So, for example, some program phases mayaccess the entire set of items, but others only accessthe 20 pages worth of items that are always of interest.This is representative of an apparently common sit-uation in a variety of programs. For example, in adatabase-like system, one program might iterate overa set of commonly-used records, while another mightiterate over that same set plus a set of related recordsthat give more information about those items.1212This principle is well-known in physical design of relationaldatabase systems. A logical relation is often split into multiple\physical" tables (data structures such as sequential �les or B+trees), keeping only those attributes together that are always oralmost always accessed together by all common queries.Similar issues arise in the implementation of interactive pro-gramming systems, where the di�erent kinds of informationabout varibles are often intentionally separated into separatetables; a compiler may examine variable name strings, as wellas value �elds and other information, but a running programmay only access the value �elds. For example, in CommonLisp implementations, it is common to separate the parts of a\symbol" table into a set parallel vectors (1-D arrays), ratherthan using a single vector of records. Among other things, thisseparates the �elds that are likely to be accessed only by thecompiler (such as variables' name strings) from those that are

As another example, consider �le systems that sepa-rate directory information from the contents of normal�les. Some programs may simply traverse directories,while others mostly read �le contents, and others doa combination of these things.We believe that this is common in many (if notmost) nontrivial, data-intensive systems|that is,most programs for which locality is important. Mostprograms perform a variety of di�erent operations onoverlapping sets of data, using indexing data struc-tures to keep the di�erent characteristic access pat-terns e�cient.In this example, we want to do two things:� Keep the entire set of 100 blocks' worth of items\together," in the sense that they are groupedinto a set of 100 blocks, and� Avoid intermingling the 20 blocks of items thatare accessed by both access patterns with the 80blocks of not-always-accessed items. That is, the20 blocks of often-used items should be kept es-pecially together, in a small subset of the blocksthat keep the overall group together.If we don't satisfy the second goal, we're likely tohave to fault in all or nearly all of the 100 pages when-ever we access the 20 pages worth of frequently-useditems. If we do satisfy it, we can still satisfy the �rstgoal. The goals are not actually in conict, even if itmay seem that way at �rst.4.3.3 An Example Clustering Problem.Consider Figure 5. In this picture, an index datastructure (whose structure is not shown) holds point-ers to a series of n data objects a, each of which haspointers to several auxiliary objects, b, c, d, and e. Forsimplicity, assume that the clustering algorithm dealswell with indexing structures and does not intermin-gle the indexed items with the internal structure ofthe index itself. (This will be elaborated later.) Justconsider the two-dimensional set of objects (a: : : e by1: : :n).Many clustering algorithms will notice that each ob-ject a is directly connected to the corresponding ob-jects b, c, d, and e, and cluster these directly-reachablelikely to be accessed by running applications (such as variable\binding cells" that hold variable values).More generally, parallel arrays are often used in array-intensive programs, rather than arrays of records, to separateout �elds that are accessed by di�erent phases of a program.33
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nFigure 5: An Example Data Structure to be Clustered.objects with it. This seems reasonable, and may infact be the right thing to do, depending on access pat-terns in the program that operates on the data|butoften it is the wrong thing to do.Suppose that we have the following frequent accesspatterns:� The index is traversed sequentially, and each ob-ject a is touched, but none of the objects it refer-ences is touched.� The index is traversed sequentially, and each ob-ject a is touched, and its pointer �elds are tra-versed to touch its b, c, d, and e.If these are the only important access patterns, theobjects a should be grouped sequentially, in index or-der (more or less), and the other objects should begrouped separately from the a's, but in a similar or-der.Notice that even if the accesses to the objects arenot strictly sequential, in key order, this may still bea very good clustering. If the index searches are non-random, and similar keys are often used|to look upobjects that are \near" each other in the key ordering,useful spatial locality will result. Bringing one objecta into the cache will also retrieve a set of other objects

a with similar keys. Bringing one object of the otherkinds will also bring in objects of those types whosea's have similar keys, and are therefore likely to beaccessed soon.When is this likely to be a bad clustering? Theclearest case is when accesses to a's exhibit no localityin terms of the index keys (e.g., truly random accessesto a's), and each access to an a is followed by an accessto its b, c, d and e. In that case, each fault on an amay be followed by a fault on another page or moreto retrieve the associated objects. On the other hand,if the random accesses to a's do not usually involveaccesses to the related objects, keeping a's separatemay actually be bene�cial.13For one likely access pattern, separating the a's fromthe b's is likely to be very bene�cial, and for another,it is harmless. For another, however, it does harm.This example illustrates three important points:� Clustering algorithms should not be too local andgreedy. Grouping objects by local connectivitymay group together objects that should be sep-arated, because they are not always accessed atabout the same time.� Multiple access patterns may not cause goal con-icts in terms of clustering, as when grouping a'sseparately from their related objects for the �rsttwo types of access patterns.� Sometimes goal conicts do arise, as in the casewhere index probes may be random and randomaccesses to a's usually include pointer traversalsthat touch the related objects.4.4 O�ine vs. Online ClusteringA clustering algorithmmaybe used online, to reclusterdata dynamically according to actual access patterns.For example, a virtual memory system might recordthe order in which pages are actually touched, and in-crementally regroup objects during normal operationto dynamically tune the system to its workload.Many clustering systems are o�ine, however.Rather than performing clustering while programsrun, some information is used to group items togetherbefore programs run, and during execution the clus-tering cannot be changed. This is common in normal13For example, if the a's could all �t in memory, but theentire data structure could not, then this would allow cachingthe entire randomly-accessed data structure.34



memory hierarchies, which provide little support for�ne-grained regrouping of objects within virtual mem-ory pages.O�ine clustering clearly has less ability to adapt todynamic patterns of accesses than online clustering.On the other hand, the potential of o�ine cluster-ing has hardly been understood, much less exploredthoroughly, and it may well be that cheap o�ine tech-niques can provide much better locality than systemsthat don't pay attention to clustering issues.A particular weakness of o�ine algorithms is thatthey generally cannot cluster items based on past pat-terns of access to those items if the items only existat runtime. They only have data about references toobjects during past program runs, not during a futurerun, and can only reorganize \persistent" data suchas �le data, saved system heap images, and code anddata in executable �les.On the other hand, this weakness may not be ascrippling as it appears; it may be possible for an of-ine system to abstract away from individual objectsand learn what works for clustering kinds of objects.Lessons learned from prior experience can then be ex-ploited in a (non-adaptive) online algorithm.Simple examples of this include experimenting withdi�erent memory allocation algorithms linked into aprogram, so that a good one can be chosen for actualuse, or trying several module orderings when linkinga program, to �nd one that exhibits better behaviorduring testing runs. More advanced approaches re-quire the use of more advanced instrumentation andanalysis to observe the behavior of the program, andguide the search for a likely clustering technique.4.5 Sources of Information to GuideClusteringWhether online or o�ine, real clustering systems usu-ally rely on partial information to guide clustering,using heuristics in the prediction function. Obviously,any real and general clustering system is unlikely tohave exact and detailed information about future ac-cess patterns, and must rely on past behavior or theimplementor's intuitions.If detailed information about access patterns is notavailable, the clustering algorithm clearly must settlefor weaker knowledge, and rely more on heuristics toprovide a \prediction function" that can be used forclustering.Among o�ine clustering algorithms, some require

some information about the actual pattern of dynamicaccesses during \pro�ling" or \training" runs. Oth-ers rely on simple heuristics, such as grouping objectsbased on their pointer connections and/or their types.Others rely on declarations provided by programmers.Even among online clustering algorithms, however,the amount of information available for clustering maybe severely limited. For example, in most systems,there is no easy or a�ordable way to record informa-tion about the order of accesses to individual smallobjects. An online clustering system may thereforehave to rely on heuristics to estimate the predictionfunction.In some cases, an o�ine clustering algorithm mayhave richer information than an online one. For ex-ample, it may be possible to instrument a programin fairly expensive ways to gather information dur-ing training runs, but such expensive instrumentationwould be prohibitive for runtime use in normal oper-ation. (For example, a program might be run undera machine code interpreter to gather very detailed in-formation, but it would run very slowly; normal userswould not generally pay this cost in actual use.)4.5.1 Access SequencesThe best kind of information for guiding clusteringis actual access sequences, such as reference traces,which show in detail the ordering of touches to individ-ual items to be clustered. Such data can be analyzedin a timescale-relative way to determine a good clus-tering for the intended memory con�gurations (e.g.,large memories or small).In an o�ine algorithm, records may be kept of re-cent access patterns, and this may be use to dynam-ically reorganize data. This information might be inthe form of reference traces gathered during trainingruns, or even during normal operation. The storageand I/O cost of such information can be very large,however.For an online algorithm, e�ciency is expecially im-portant, so it is especially important to keep the over-head low, and record only the most predictive infor-mation. Some systems reorganize data periodically,according to the order of �rst accesses to an objectwithin a period; all other information about accessorder is lost.35



4.5.2 Pro�lesSome clustering systems are based on simple pro-�le data, which records the frequencies of cer-tain operations|for example, how often a particularpointer �eld of a particular kind of object is traversed.This can be used to inform the clustering algorithmof the importance of particular kinds of events duringexecution.Pro�le data can be misleading, however, because itis usually not timescale-relative. Most pro�le-drivenclustering schemes are based on simple heat, either ob-ject heat (which objects are touched the most times)or link heat (which pointer links are traversed themost). Typically, link heat is used to cluster objectsgreedily, preferentially grouping objects linked by hotlinks. Less greedy algorithms may be used, usingheuristics to group objects so that the total heat oflinks across block boundaries is minimized [?].Object or link heat may not be a good metric of theimportance of clustering objects together, however, fortwo reasons:� It is not timescale relative. Heat is not timescalerelative (Sections 2.5.1, ??) and may be mislead-ing. The importance of a reference to an object(or a link traversal to an object) depends stronglyon the temporal pattern of references. Many ref-erences to an object over a short period of timemay have little importance for clustering, while afew references over a longer period of time maymatter much more.� It does not distinguish between overlapping work-ing sets. Objects may have equal heat, but if theyare accessed at very di�erent times, they shouldgenerally not be clustered together. Similarly, iftwo objects are reached from the same object viacomparably hot links, but the links are traversedat very di�erent times, the objects should not begrouped together. (Section 4.3.3.For example, if we note that we traverse pointersfrom a's to b's 10 times as often as pointers from a's toc's, does that suggest that b's should be grouped witha's, in preference to grouping c's with a's. Maybe so,but maybe not.Recall that the problem with LFU replacement wasthat the count of individual touches to a page mighthave little to do with its actual importance for caching.Likewise, the frequency of a particular kind of pointer

traversal may have nearly nothing to do with the im-portance of that kind of pointer link for clustering.Suppose, for example, that links from a's to b's areusually traversed during phases where little data isactually touched, and locality is not particularly im-portant because everything �ts in the cache. (For ex-ample, the same pointers may be traversed repeatedlyover a short period of time, during CPU-intensive iter-ation over a fairly small set of objects.) Suppose thatin contrast, pointers from a's to c's are traversed dur-ing very data-intensive phases that iterate over verylarge volumes of data.It may well be that the frequency of link traversals ispositively correlated with their importance for cluster-ing, but this has never been demonstrated, and thereis every reason to question this assumption. Manyprograms consist of di�erent kinds of phases, includ-ing very regular operations over large amounts of dataand much less regular, CPU-intensive operations overmuch smaller amounts of data. This suggests that thecorrelation between link traversal frequency and im-portance for clustering could be negative in some of themost crucial cases. Simple clustering by links (with-out traversal frequency weights) may work as well orbetter.4.5.3 Reachability via Pointer LinksMany systems cluster data by reorganizing objectsaccording to the pointer links between them. Forgarbage collected language implementations, this isoften done during copying garbage collection. Forobject-oriented databases, it may be done during oc-casional reorganizations of persistent data.A reachability-based reorganization starts fromsome set of \root" pointers, from which all objectsare directly or indirectly reachable. (In an objectdatabase, this might be a top-level directory object,which holds pointers to major indexing data struc-tures. In a garbage-collected language implementa-tion, this might be the set of pointers in local andglobal variable bindings and registers.Typically, reorganization happens during a traversalof the data structures reachable from the roots. Someexhaustive graph traversal algorithm is used, such asbreadth-�rst or depth-�rst, and objects are movedto new storage as they are reached by the traversal.(When an object that has already been reached andmoved is reached again, the traversal is short-circuitedat that object, and the pointer is simply updated topoint to its new location.) Since objects are copied to36



new storage as they are reached by the algorithm, thetraversal order determines the clustering.Simple graph traversals. Two common traversalorderings are depth-�rst and breadth-�rst, but theseboth have potential weaknesses. A depth-�rst al-gorithm may tend to plunge far into the reachabil-ity graph, traversing many pointers, grouping objectsthat are only distantly related by pointer links. Abreadth-�rst traversal is more \even handed," buttends to decompose the reachability graph into lay-ers. At the �rst layer (near the roots), it tends togroup siblings together, but as successive generationsof descendents are reached, it may group more andmore distantly related cousins together.An alternative is to use a hierarchical decomposi-tion [WLM91] of the reachability graph, which tendsto pack pages with the nearest descendents of an ob-ject, e.g., the �rst few levels of a tree, and then recur-sively do the same for the descendents of the objectson that page, packing each subtree into its own pageif possible.For simple trees, hierarchical decomposition ensuresthat the path from a root to a leaf is as short as pos-sible, in terms of the number of blocks visited. Thisclosely resembles a B-tree, in that the upper levels ofthe tree, when viewed as a block, e�ectively act as asingle larger node in a multiway search tree; this nodejust happens to be internally indexed as a lower-aritytree. Likewise, subtrees below this \node" (block) aresimilarly packed, putting as many levels as possible inone block.Since linear lists are degenerate trees, a hierarchicaldecomposition will pack successive elements of a listinto a block. (This also happens with depth-�rst andbreadth-�rst traversals.)Simple graph traversals tend to cluster related ob-jects together, in that objects with pointer links be-tween them are typically more likely to be touchedtogether than objects that are not linked|typically,an object is reached by following pointer links fromother objects. While this is much better than a ran-dom organization [Bla83], it still may not be partic-ularly good, because some pointer links may be farmore important than others in terms of locality.A simple graph traversal clusters objects via point-ers that may be traversed, but those pointers may notbe traversed, or may be traversed in some phases andnot others. This has four important weaknesses:� Some objects may be reachable via multiple

paths, and a typical (greedy) clustering will groupobjects together according to the �rst link en-countered by the traversal, which may not be themost important one.� Some links may not be traversed much, andgrouping according to those links may give\unimportant" objects equal weight, at the ex-pense of grouping more important objects to-gether.� Some links may be traversed during some phases,and others during di�erent phases. Grouping ob-jects according to the structure of the reachabil-ity graph may intermingle working sets that areseparate at run time, wasting cache space whenonly a subset of the objects are actually neededin cache.� Some links may be from indexes with extremelypoor locality, such as hash tables, and groupingaccording to those links may make locality muchworse by grouping together objects which are ac-cessed in randomized ways [WLM91].Type-sensitive traversals. To avoid some of theproblems with blind graph traversals, a reachability-based algorithm may be enhanced by making it sensi-tive to the types of objects that are encountered duringa traversal. Objects of di�erent types reachable fromthe same object may be clustered apart, in the expec-tation that di�erent kinds of objects may be accesseddi�erently [LWM92]. Some types may be treated spe-cially, such as hash tables, so that objects are prefer-entially clustered according to links that are likely toyield better locality [WLM91].Less greedy traversals. Most reachability-basedclustering schemes cluster the reachability graph asthough it were a tree|the �rst pointer to each objectis used to determine the object's placement, and sub-sequent pointers to the same object have no e�ect onplacement.It would also be possible to take into account thesharing of subgraphs of the graph; objects reachablevia multiple paths might be clustered apart from thosereachable via only a single path. This might tend toseparate objects used during multiple kinds of phasesfrom those used during a single kind of phase, espe-cially if the di�erent paths are from di�erent largeindexing data structures.37



4.5.4 System- and Application-specific Decla-rationsWhile the ideal clustering system would be fully au-tomatic, it is also possible to exploit programmers'knowledge of application behavior to �nd a good clus-tering. Programmers often know that certain sets ofobjects are likely to be used together, while others areonly used during distinct phases.Link weight declarations. Some systems providea mechanism for the declaration of the importance oflinks. For example, when de�ning a class or recordtype, the programmer may specify that a certainpointer �eld should have strong weight in determin-ing a clustering, and others should not.Explicit clustering directives. In other systems,objects may be assigned to clustering groups whenthey are allocated, or the programmer may give hintsthat certain objects should be clustered together.A common way of doing this is for the underly-ing storage mechanisms to maintain separate stor-age pools, which may just be sets of pages. (Theseare variously known as \areas," \segments," \arenas,"\�les,"or \heaps.")In several systems, a programmer can explicitlyspecify which storage pool to put an object in whenthe object is allocated. Alternatively, the programmermay give a hint that an object should be clustered nearsome other object, and it is the allocator's job to at-tempt to �nd a satisfactory clustering based on thehints.These explicit clustering directives may be aug-mented with other clustering techniques. For exam-ple, the programmermay specify which objects belongin which storage pools, but the system may augmentthat coarse grouping by clustering objects within apool according to a reachability-based scheme.4.5.5 Discussion4.6 Some Clustering Schemes4.6.1 On-the-y Reorganization of VirtualMemory Pages on Disk.In its normal operation, a normal virtual memory sys-tem detects the order of accesses to pages in a time-scale relative way|at a page fault, it is known thata page is being touched for the �rst time since it wasevicted. A virtual memory system typically maintains

an approximation of an LRU recency queue as well,and therefore can detect the order of last accesses topages over the timescale relative to the cache.It is natural to attempt to exploit this information,by grouping virtual memory pages on disk in an or-der that will improve locality for future accesses. Byordering pages on disk in a way that reects dynamicaccess patterns, and using sequential prefetching, itmay be possible to fetch more useful data per seek.In [BS76], Baer and Sager attempted to apply thisprinciple in simulations of a virtual memory system.Their simulated virtual memory system regroupeddata at eviction time, grouping the four least-recent-ly-used pages together in a block.Unfortunately, the results were disappointing. How-ever, on examination of their experimental design,it appears that they may have chosen unrealisticallysmall memories, and inappropriately large block sizes.(This was apparently due to the fact that their testprograms simply didn't use much memory.) Theirmemory sizes were generally less than 100 pages, andsometimes much less; in terms of current systems, thismeans that the page size was very large with respectto the memory size, and the system was already fetch-ing too much data at each seek. (Recall that mod-ern memories typically have several hundred or evenseveral thousand blocks at each level of the memoryhierarchy.) Naturally, any extra prefetching is likelyto exacerbate this problem, so a negative result forprefetching may be pessimistic.For programs with larger data sets, and a memorywith several thousand blocks, such a dynamic reorga-nization may work much better. Examining Baer andSager's data, there appears to be a trend of improvingperformance (relative to a non-prefetching policy) asmemory size increases. Extrapolating to a more real-istic ratio of memory size to block size, it appears thatBaer and Sager's technique may in fact be worthwhile.4.6.2 On-the-y Reorganization of Objects inan Object-oriented Memory Hierarchy.More recently, the MUSHROOM group at the uni-versity of Manchester have simulated the e�ects ofclustering individual objects in an \object oriented"memory hierarchy. This system uses the same basicprinciple as Baer and Sager's, but relies on the use ofa high-speed cache architecture that caches arbitrary-sized objects. This allows the reorganization of indi-vidual objects within pages, rather than just reorga-nizing pages within larger units of disk transfer.38



The MUSHROOM simulations produced encourag-ing results, although the tested workload consistedprimarily of small Smaltalk programs. Further ex-perimentation is needed to assess the e�ects of thispromising technique for other (and larger) workloads.The main drawback to the MUSHROOM systemis that it relies on an unusual hardware architecture,which supports the relocation of individual objects.In general, this kind of architecture is more expensivethan traditional memory hierarchy designs. The im-provements due to clustering must be weighed againstthe cost of a novel hardware design.4.6.3 On-the-y Reorganization of Objectsduring Incremental Copying GarbageCollection.Incremental copying garbage collectors based onBaker's algorithm naturally reorganize data in mem-ory, in the order that they are reached either by thegarbage collector or the running application program.An incremental collector traverses reachable data insmall units of traversal work, interleaved with smallunits of application execution. A copying collector re-locates objects as they are reached by the collector,compacting them into a contiguous (or mostly con-tiguous) region of memory. In Baker's scheme, point-ers touched by the running program are also incorpo-rated into the collector's traversal, and immediatelyrelocated. This requires a \read barrier," which isa special sequence of instructions executed at eachpointer operation, to detect whether a new object hasbeen encountered. (Lisp machines had special hard-ware support for the read barrier, to avoid the extrainstructions at a cost in hardware and/or microcode.)In [Whi80], White pointed out that the read barriercould be exploited to reorganize data according to aprogram's actual access patterns. The garbage collec-tor's normal traversal of data structures could be sup-pressed during most of a garbage collection cycle, sothat the only relocation was due to the program's ac-cessing pointers and the read barrier's copying them tothe new heap region. (This can be augmented by hav-ing the normal background traversal copy data into adi�erent region of memory.) Objects reached �rst bythe running program will thus be relocated and clus-tered in the order in which they're actually touched.For Baker's original algorithm, locality is stillquite poor, because a simple garbage collector tendsto touch a large amount of memory before it iscompacted|compaction is \too little, too late" to

avoid the major problem of failing to reuse memorypromptly [Wil]. Generational garbage collectors cangreatly reduce this problem [?], however, and the dy-namic reorganization principle is applicable to incre-mental generational copying collectors.Courts [Cou88] applied this principle to the gener-ational collector of the Texas Instruments Explorer (aLisp Machine), with good results.The di�culty with this incremental copying schemeis that the cost of the read barrier may be prohibitiveon standard hardware, slowing program execution byseveral instructions at each pointer operation. Otherincremental collection techniques may perform betterin terms of raw performance [WJ93, Wil], but do notprovide a \hook" for reorganizing data occording toaccess patterns.4.6.4 Pro�le-driven Reorganization of DiskCylindersHeat-based reorganization has been used in disk stor-age, to perform a simple kind of very coarse-grainedclustering and reduce seek distances. Entire disk cylin-ders are exchanged, putting the hot cylinders near thecenter of the disk head's throw, so that most seekswill be to locations near the center. (This is not thecenter of the disk, but the center of radius of the disk,between the spindle and the edge of the platter, overwhich the disk head seeks.)The best-studied technique for disk cylinder reor-ganization simply puts the hottest cylinders near thecenter of the head's throw, so that seeking from onehot cylinder to another is cheap, and seeking to coolercylinders is more expensive [VC90]. This is calledan \organ pipe" arrangement, because a histogramof disk seeks looks like the pipes of a church organ|tall columns in the middle, with decreasing columnheights toward the sides.Timescale relativity and \heat" in disk reor-ganization. The e�ectiveness of the organ-pipe ar-rangement has widely been interpreted as evidencethat heat-based clustering is likely to be e�ective inother contexts (e.g., in [?]). However, it is importantto realize that the \heat" used in disk reorganizationis generally not simple heat in the sense that we haveused it so far.The statistics that are used for disk reorganizationare usually based on disk seeks, not simple block ac-cesses. The pro�les used to guide reorganization are39



not pro�les of touches to blocks by application pro-grams, but of touches that miss the main-memorycache. The use of miss pro�les rather than touch pro-�les improves timescale relativity. Frequent touchesto cached blocks|which are not generally importantin terms of locality|do not get recorded.Replicating hot blocks.4.6.5 Reachability-based Clustering in Copy-ing Garbage Collectors4.6.6 Reachability- and Type-based Cluster-ing in Copying Garbage Collectors.4.6.7 Allocation-order and Size-based Clus-tering in Conventional Memory Alloca-tors.4.6.8 Pro�le-drivenOrganization of Code andStatically Allocated Data at Link Time.4.7 Discussion5 Architectural Considerations5.1 Basic Memory Hierarchy Organi-zation5.1.1 Interactions Between Levels5.1.2 Basic Structure of High-Speed Caches5.1.3 Basic Structure of Virtual Memories5.1.4 Disk I/O5.2 High-speed Cache Memories5.2.1 AssociativityFully associative caches.Set-associative caches.Direct-mapped caches.Associativity and Speed.Associativity and Locality.Victim Caches.

5.2.2 Write Policy and Write Bu�eringWrite-back.Write-through.Write-around.5.2.3 Split Instruction and Data Caches5.2.4 Subblock (Sector) CachesWrite-validate.5.2.5 Virtual vs. Physical Indexing and Tag-ging5.2.6 PrefetchingSimple prefetching.History-based prefetching.5.3 Virtual Memory5.3.1 Translation Lookaside Bu�ers (PTECaches) and Traps5.3.2 Implementing Replacement PoliciesFIFO.ProtectionBits and SegmentedQueue Approx-imations of LRU.Reference Bits and Clock Algorithms.Dirty Bits and Write Policy.5.3.3 Variable-Space Policies and ProcessSchedulingWorking sets and allocation of memory to pro-cesses.Thrashing.Job scheduling to avoid thrashing.5.3.4 Page TablesMultilevel Page Tables40



Inverted Page Tables5.3.5 Memory-mapped �les5.3.6 Shared memory and mapping5.3.7 Sharing and Protection Issues5.4 Disk Storage Management5.5 Some Novel Memory Systems5.5.1 Flash RAM5.5.2 Distributed Caching and DistributedVirtual Memory5.5.3 Compressed Caching6 Toward a Deeper Under-standing of Reference Local-ity[ this is partly redundant now... this sectionwill elaborate earlier ideas based on interven-ing sections on architecture, etc., pulling thingstogether better][ As noted earlier, ] designers of memory hier-archies generally assume some degree of temporal andspatial locality, but the causes of locality are seldomexamined in detail. Locality of reference is a complexfunction of regularities in data, data structures and al-gorithms used to manipulate the data, and compiler,linker, and allocator decisions that determine wherethose data are in memory at run time.6.1 Where Does Locality Come From?(revisited)6.1.1 Clustering6.1.2 Checkpointing6.1.3 Allocation and (Re-)InitializationInitialization Misses. [So far, we have usuallyassumed that all misses cost the same amount.]This is not always true, however, as we noted in[the architecture section]. A particularly impor-tant case where it may not be true is initial misses,the �rst time a block is touched. At �rst glance, itmay seem that initial misses must always cost whatany normal miss costs|after all, a block is generallynot brought into the cache until the �rst time it is

touched. This is not necessarily true, however, de-pending on why the miss actually occurs.If the miss occurs because data are actually beingfaulted in from slower storage, then generally the misscosts the normal amount. On the other hand, if ablock is being used for the �rst time, and initializedwith new data, it may not cost anything at all|ratherthan faulting the blocks old contents into the cachefrom slower storage, it may be possible to \create" anempty block \out of thin air," in the cache. This re-quires that the cache distinguish between a touch to apre-existing block and a creation of a \new" block,and treat each appropriately. In either case, how-ever, a block frame is required to store the new block,and this usually requires the eviction of an older blockcached there; if that block is dirty, its contents mustbe written back to slower storage.This kind of optimization is performed by most vir-tual memory systems. When a program requests morevirtual memory from the operating system, the oper-ating system knows that this is virtual memory thathas never been touched before, and does not haveany \old" contents. The virtual memory system maytherefore reserve a block frame in the cache, and sim-ply initialize it with zeroes, or leave its old contents inplace on the assumption that the program will over-write them as new data objects are created in thepage.14(Typically, new memory is not requested from theoperating system directly by an application program.The application program usually uses a library (e.g.,containing the C library functions malloc() andfree(), which manage free storage). When the al-location routine cannot satisfy a request for block, itrequest more virtual memory from the operating sys-tem, typically in units of one or more pages, and sub-divides that memory to accomodate the application'srequests.)Some high-speed cache memories include specialfeatures that accomplish much the same thing, andin fact optimize for a more general case. These write-validate caches (which we will discuss in more detaillater) notice when any miss is due to a write, ratherthan a read. In that case, they create the block \out ofthin air" in the cache, but keep track of which words(or some other sub-unit) of the block are written to14For security reasons, many operating systems zero-�llpages, to keep old contents (which may belong to other pro-cesses) from being visible. As an optimization, the virtual mem-ory system may keep track of whether the old contents belongto the same process, and only zero-�ll pages if they do not.41



before they are read. If a word is written to, it ismarked \valid", and subsequent reads will read thenew value. If a word is read before being written to,its old contents are faulted into the cache from slowerstorage. (Generally, all of the \missing" words of theblock are faulted in at this time, to avoid faulting onindividual words.)Interestingly, the write-validate optimization worksin cases where the application does not request \new"memory, but simply overwrites blocks of data. Con-sider a program that uses a large, statically allocatedarray, repeatedly �lling the array with values and thenperforming some computation over those values. Eachtime it goes through the array, �lling it with new val-ues, the write-validate optimization comes into play.The old values are not loaded into the cache at the�rst write to each block; the blocks are simply cre-ated in cache and \initialized" with their new valueswithout bothering with the old values.At a certain level of abstraction, it may seem thatthe write-validate optimization is doing somethingfundamentally di�erent (as well as more general) thanwhat a virtual memory system does in creating a newpage ex nihilo. In the case of the virtual memory op-timization, a new virtual page is being created, andpresumably initialized with new language-level dataobjects (e.g., heap-allocated objects created by callsto malloc()). In the case of write-validate cachesand statically-allocated language-level objects, the op-timization is detecting the assignment of new valuesinto existing objects.If we examine these cases at a higher level of ab-straction, however, the cases may seem more simi-lar. When a statically-allocated object is reinitial-ized, this often corresponds to the creation of a newdata set, implementing a new conceptual, application-level object. The fact that a language-level objectis reused is secondary in such cases; interestingly,the write-validate optimization often collapses thelanguage-level di�erences|allocating a \new" objectvs. reusing an old one for new data|and treats themthe same way because they are fundamentally thesame thing.

6.1.4 Indexing6.2 Varieties of Locality6.2.1 Hot/Cold Locality6.2.2 Mostly-LIFO locality6.2.3 Mostly-FIFO locality6.2.4 Address-sequential locality6.2.5 Repeated-sequence locality[ Timescale relativity: e.g., sequence of missesrather than sequence of touches. ]6.2.6 Similar-sequence Locality[literal vs. comparable repetitions|moderatedi�erences in order make no di�erence at mostscales.][higher-order patterns, e.g., strides, LRU-LRU transform]6.3 Locality at Di�erent Levels of Ab-straction.6.3.1 Locality in Data.6.3.2 Program-level Locality of Reference.[incl. allocation vs. re-referencing ]6.3.3 Memory-level Locality of Reference6.4 E�ects of Allocator choice6.4.1 Memory Reuse6.4.2 E�ects on Clustering6.4.3 Nonmoving Allocation6.4.4 Garbage Collection6.4.5 Nonmoving Allocation6.4.6 Compaction and Regrouping6.5 Data Structure and AlgorithmChoice6.5.1 Arraysmapping by indexing|regularities in what'sindexed map to regularities in what's accessed.row-major vs. column-majorblocking42



6.5.2 ListsHot-cold temporal locality may work if onlyfront of list is often accessed. But timescalerelativitymatters a lot: if any elements furtherdown the list are touched very often at all, allintervening elements will be touched.Spatial locality is also crucial: if the list is notgrouped, locality will be bad. If list is groupedbut in wrong order, locality will also be bad|you'll fault in most of the list even if you onlytouch relatively few elements.6.5.3 Trees[ At the logical level (accesses to program ob-jects linked into a data structure) trees mayor may not have excellent locality, dependingon the key sequence used to probe the tree.If the key sequence is sequential, or there arestrong key-space localities, locality is likely tobe excellent. If the keys are e�ectively random,locality will naturally be poor. ][ Language-level locality in trees vs. addresslocality: if tree is not grouped in good orderin memory, bad news. Grouping the tree likea b-tree, with the upper levels together on apage, and then the upper levels of subtreeson separate pages, is probably best [WLM91].Conventional binary tree rebalancing may sys-tematically destroy locality if no reclustering isdone. ]6.5.4 Hash Tables[ Hash tables generally have terrible localityat their own scale. Randomization systemat-ically causes bad locality|that's a hash ta-ble's job|but hash tables can have big sec-ondary e�ects, either by a�ecting clusteringin disastrous ways, or by a�ecting algorithmsthat iterate over tables and touch the indexeddata structures in randomized order. This canusually be avoided by keeping the table en-tries in key order or insertion order, and us-ing a hashed index into that ordered collections[WLM91].][ At a fairly �ne granularity, spatial localitymay be strongly a�ected by the strategy forcollision resolution. Rehashing is often thoughtto be good, because it disperses colliding keys,

but this naturally causes accesses to distantparts of the table. Simple linear search for anempty slot may have much better spatial lo-calit, tending to keep a single search within asingle block. [?]]6.6 Checkpointing6.6.1 The Importance of Checkpointing6.6.2 Checkpointing at the Data StructureLevel6.6.3 Checkpointing at the Virtual MemoryLevel6.6.4 Interactions of Memory Allocation andCheckpointing6.7 E�ects of Programming Model6.7.1 Sharing vs. CopyingFile I/O vs. PersistenceExplicit Freeing vs. Garbage Collection6.7.2 Process Models and Interprocess Com-munication6.7.3 Persistence7 Algorithmic Analyses forData-Dependent Algorithms7.1 Tree Algorithms[Blah blah...]Perhaps an example is in order here. Onewell-known recent invention is the Sleator-Tarjan splay tree, a kind of self-adjusting bi-nary trees presented in [ST85]. Using an amor-tized analysis, Sleator and Tarjan have shownthat splay trees' worst-case time performanceis at least competitive (within a constant fac-tor) with that of any conventional binary tree,for a su�ciently long sequence of inputs. Thisresult is interesting in itself, and has receivedconsiderable attention. On the other hand,the motivation for splay trees is not primar-ily to provide logarithmic bounds on averageaccess times, which is easy using a variety of43



tree structures|it is to provide a highly adap-tive data structure which can \beat the odds"on average, by exploiting certain common regu-larities in many kinds of real input data. Splaytrees exploit a recency property known to occurin several kinds of data sets|if a key occursat a particular point in a sequence, it is morelikely to be seen again soon than other keys.Whether or not [the dynamic optimality con-jecture or whatever] can be proven, it is inter-esting to ask several questions:� How common is this regularity in real datasets? When can it be expected to occur,and when not? For what kinds of applica-tions does this make splay trees attractive?� What other regularities do splay trees ex-ploit?� What other regularities are common andeasily exploitable, perhaps by a variant ofsplay trees? What features can be com-bined so that an algorithm can exploitany or all of several common regularities,for robustly good performance? Whichof these features is combinable with goodworst-case performance (as in the case ofsplay trees) and which entail taking a riskof very poor performance to exploit ex-pected regularities?[ Splay trees exploit a kind of spatial locality,in the space of the key values used to probethe table. On average, they move nodes alonga search path halfway toward the root, mak-ing future accesses to things with near-by keysfaster...This may be optimal within constant factorsfor any kind of tree. How is this possible,when optimal online replacement|a seeminglysimilar problem|is not possible? Because fortree lookups, the cost of a adapting to an ac-cess when it happens is comparable to the costof adapting to it before it happens|�guringthings out ahead of time isn't as critical, be-cause the cost of reorganizing the tree is similareither way.]

7.2 Graph Algorithms7.3 Compression Models8 Data Regularities, Algorith-mic Regularities, and Local-ity of Reference8.1 Multiple Levels of Organization9 Analytic ModelsLocality and caching studies usually involve detailedsimulation experiments, to show how well a proposedmemory hierarchy design would work for some real ap-plications, with the expectation that this will resem-ble its performance for other applications. This is thesoundest kind of memory hierarchy study, because itcan take into account many possible interactions be-tween actual program behavior and the behavior ofcaching policies.Sometimes, \analytic" (mathematical) models ofcache performance are developed, concisely summa-rizing some of the tradeo�s in cache design for somesmall set of design parameters|most often, the cachesize, associativity, and block size. Often, these math-ematical models are parameterized in terms of \pro-gram behavior," and the intent is to show how dif-ferent kinds of workloads will interact with di�erentcache con�gurations. Certain relevant characteristicsof real workloads are measured, and it is shown that amathematicalmodel based on these measures can pre-dict cache performance reasonably well|for a smallset of design variations.When choosing between analytic models and exper-imental evaluation, the �rst thing to realize is that theanalytical models are extremely weak. They are gen-erally based on a fairly super�cial analysis of programbehavior and its implications, and gloss over manyinteresting and important issues. Many are based onlow-order Markov models (described later), which cap-ture only short-term sequences of events and are sys-tematically biased toward certain unrealistic kinds oflonger-term behavior that is directly relevant to mem-ory hierarchies.Because the analytic models are so limited, exten-sive simulation is often used to evaluate important de-signs, and in any exploratory research involving novelideas about locality.44



[need more empirical exploration of princi-ples, not just bottom-line comparisons of spe-ci�c designs.]9.1 \Analytic" Models?So-called \analytic" models of program behavior arenot always truly analytic. They are often \analytic"in the weak sense that certain consequences follownaturally and inevitably from certain axioms (andpossibly input data). Unfortunately, the axioms aresometimes poorly-motivated, and the relevant inputspoorly understood. Analytic models may be quitesound mathematically, but as scienti�c models, theyare usually quite simplistic, and far from analytic.Program behavior usually usually can't beunderstood\from �rst principles" in many interesting senses rel-evant to memory hierarchies.This is not to say that some analytic models aren'tuseful for some purposes. If a designer wants a roughestimate of the e�ects of adjusting some fairly well-understood tradeo�|e.g., doubling the cache associa-tivity vs. doubling the number of sets|an analyticmodel may be helpful. (On the other hand, simpleinterpolation in tables of known cache behavior maydo about as well.) Often, the mathematical formulaeof analytic models are best viewed as a concise rep-resentation of empirical data|a handy way of doingcurve �tting. Such a model may also be very usefulfor theory testing; whether the model fails to predictimportant phenomena correctly may guide the searchfor explanations.Sometimes models embody principles that can beused to extrapolate reasonably beyond the knowndata, but often they do not, and in any case such ex-trapolation is intrinsically risky|it is guesswork, andshould be recognized as such and done very carefully.Often a highly mathematical presentation of a modelconceals the fact that the model is simply not realistic.For important decisions, and especially when the de-sign is novel, there is no substitute for detailed sim-ulation experiments using real traces program behav-ior. The analytic models embody so many assump-tions that they are invalid outside a fairly narrow,well-understood region of the design space. For exam-ple, most models do not address locality and timingissues relevant to prefetching at all, or only addressthose issues relevant to the very simplest kinds of se-quential prefetching. If one of these models is used topredict the performance of a sophisticated prefetching

policy, the answers are probably going to be wrong, andif they're not, it may be due to blind luck.9.2 The Roles of ModelsThe development of \analytic" models of program be-havior has two intertwined themes:� An attempt to summarize empirical results suc-cinctly, without necessarily understanding theirunderlying causes; and� An attempt to show that known regularities haveinevitable e�ects on memory hierarchies, and thusto \reduce" observed regularities to the workingsof underlying mechanisms.In examining models, it is important to keep thesevery distinct ideas in mind. Much modeling workmixes the two, and often rightly so. Certain aspectsof program behavior are understood well enough toallow phenomena to be explained clearly and analyt-ically. Other aspects are understood approximately,and models may include \fudge factors" based on ob-served regularities that are not clearly understood.This is common in scienti�c modeling, and is not nec-essarily a aw.Sometimes, modelers attempt to do without fudgefactors, and derive powerful models from very sim-ple ideas. Often these attempts are abject failures,whether or not that failure is recognized. Sometimesthe attempts are reasonably successful, within cer-tain very narrow limits of applicability, but grandioseovergeneralizations are made about program behav-ior. Frequently, a highly mathematical presentationconceals a serious lack of understanding of the under-lying phenomena.In reading the following, the main fact to keep inmind is that program behavior is generally not well-understood, so any attempt at a grand uni�ed modelis likely to be premature.9.3 Common WeaknessesMost current models of program behavior su�er fromone or more of the following limitations:� Narrow scope. The most accurate models tend toonly reliably model program behaviors relevantto certain well-understood cache designs, such assimple fully-associative LRU caching. As morefeatures are added to the cache (set associativity,45



prefetching, etc.), the models' weaknesses becomeincreasingly severe. In some cases, empirical re-sults can provide reasonably e�ective fudge fac-tors over a slightly broader range of well-knowndesigns, but any really novel design is likely todepend on realities that the model simply doesnot capture.Little attempt has been made to model the ef-fects of higher-level aspects of program behaviorand language implementations. The models donot provide any way of predicting performancefor programs written in di�erent styles or us-ing di�erent fundamental algorithms, or for dif-ferent language implementation strategies (e.g.,compilers and allocators). Such variations aresometimes implicitly encoded by parameters thataccount for grossly di�erent observable behav-iors, but the relationships between these param-eters higher-level causes are not identi�ed. Themodels encode the low-level \what" of memory-referencing behavior, but not the higher-level\why" of where that behavior comes from.� Failures of timescale relativity. Many models at-tempt to derive large-scale behavior of programsfrom known facts about small-scale behavior. It isassumed that if the small-scale behavior is mod-eled correctly, and the correct larger scale behav-iors will follow naturally. In general, neither as-sumption is true. (Unless, of course, a model is sodetailed as to amount to running an actual pro-gram in simulation, in which case it stops beingan interesting \model.")The better models start with program behaviorat the scales relevant to the phenomena beingmodeled, generally without explanation of howthat relates to smaller-scale behavior. This is of-ten a good strategy, because the origins of large-scale behavior are often unknown. A shallowempirically-basedmodel is likely to be much moreaccurate than a model derived from \�rst princi-ples" that are simply wrong.� Dangerous independence assumptions. Manymodels assume that unknown behaviors are sim-ply random, or e�ectively random for the pur-poses of the model. Sometimes, this assump-tion is safe within the model's scope|given itsintended applications, patterns in the unknownvariables may be known not to matter.

Often, however, the assumption that events aree�ectively random|and hence independent ofeach other|is important, and may be systemati-cally false. In reality, may matter whether certainkinds of events happen in bursty or repetitive pat-terns, or whether they are correlated with otherkinds of events.� Lacking or incorrect validatation. Some modelsare quite well validated, and known to be accu-rate for a variety of workloads over some intendedscope. Other models have never been validatedagainst real workloads at all, or only against atiny sample of workloads (e.g., one or three pro-grams).Sometimes validation has been attempted us-ing the same assumptions made by the model.Rather than using real workloads such as ref-erence traces, statistics from real workloads areused to validate some of the assumptions of themodel, and the other assumptions are assumedto be reasonable and correct. (A variant of thisproblem is the use of synthetic programs, whichwill be discussed [later].)9.4 Simple Markov ModelsMany models of program behavior are Markov modelsof some one or another, because Markov models aresimple and often mathematically tractable. Unfortu-nately, Markov models are often systematically badat modeling the aspects of program behavior that arerelevant to memory hierachies.A Markov model is based on a kind of randomizedprocess that exhibits behaviors according to certainstatistics. Known regularities are characterized statis-tically, and a random process is used, with a weightingfunction, to generate those behaviors in the appropri-ate proportions.Markov models are not \just random," of course|ifthey were, they wouldn't be useful for modeling muchof anything at all. The weightings of events accordingto statistics ensures that certain regularities will beexhibited over any long enough sequence of events.Markov models characterize regularities using a �-nite state machine, i.e., a �xed graph of nodes rep-resenting \states," connected by directed edges repre-senting state transitions. The system is assumed to bein one of a �xed (though possibly very large) numberof states at any given time, and the transition from46
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0.7%Figure 6: An IRM (zeroth-order Markov) model.each state to the next is random, but weighted by thestatistics.9.4.1 The Independent Reference Model|atrivial (zeroth-order) Markov model ofmemory referencingThe simplest kind of Markov model is a zeroth-orderMarkov model, where there is only one state, but theremay be any number of state transitions representingevents, all of which return to that state.For example, suppose we want to model the frequen-cies with which di�erent pages are touched, but noth-ing else (such as patterns in the sequence of touches.We can have a simple start state, and arcs that rep-resent touches to di�erent pages. We weight the arcswith the probabilities of touches to each page.Figure 6 shows such a zeroth-order Markov model.We can generate a statistically accurate trace fromthis model by simply looping to pick among the arcsin a random way, but weighted by their probabilities.For the chosen arc, we emit a reference to the corre-sponding page. Then we loop to do it again, for aslong as desired. The resulting trace will (probabilisti-cally) exhibit a realistic proportion of touches to eachpage, but will probably not resemble the real trace inany other interesting way.This model of memory referencing is called the In-dependent Reference Model (IRM) [?], because touchesto pages are independent of each other|they can oc-

cur in any order, with a �xed probability of touchingany particular page at any particular time.The IRM is grossly unrealistic as a model of local-ity, as was recognized quite early [?]. It only modelshot/cold skew in referencing behavior, and does notmodel other crucial regularities, such as recency skew.The IRM assumes that the pattern of references toany particular page is random, but varying arounda mean that does not change|the intervals betweentouches to a page form a random walk around a �xedvalue.If real programs were well-modeled by IRM, itwould be possible for a replacement policy to adaptquickly to the frequencies of touches to pages anduse those to infer the probability of each page beingtouched at any point in the future. The replacementpolicy couldn't guess the times exactly, of course, be-cause they're randomized, but it could usually cor-rectly guess the likely range (and probability distri-bution). For this kind of behavior, LFU would workquite well.(In fact, it would be the optimal online algorithm,since it exploits all of the information available in thetrace|no online algorithm could do better, becausethere is no other exploitable information in the patternof past touches to pages.15)9.4.2 A simple (�rst-order) Markov model ofreference sequencesAnother simple kind of Markov model is a �rst-orderMarkov model, where the likelihood of a given eventexplicitly depends only on the preceding event. Eachstate is characterized solely by what the precedingeven was; for each state, a simple weighting of eventsis used to bias a random function that picks whichevent will come next.For example, suppose that we want to model thefact that after touching a particular page, a programis likely to next touch some other particular pageswith high probability, but unlikely to touch most otherpages. (We might have observed from analysis of areference trace that touches to page A are usually fol-lowed immediately by touches to page P, occasionallyby touches to page D, and never by touches to otherpages.)15Phalke has proven that LFU is online optimal under IRMassumptions; our take on this is that it only proves that IRMis an extremely bad model of program behavior. LFU is knownto be inferior to other simple algorithms, so a proof that it isoptimal under IRM is mainly a proof that IRM is wrong.47
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97%Figure 7: A First-Order Markov Model.We can model this situation by constructing a graphof states which signify which page was touched last, asshown in Figure 7. The nodes in this graph representthe current state of the program where by hypothesisthe only interesting fact about a state is what pagewas just touched. From each node in this graph andto each other node in the graph, we create an edge (di-rected arc) signifying the possible subsequent states.The edges are decorated with a weight that gives theprobability of a transition to that state. For example,the edge between A and P might be weighted 90%, be-cause we have observed that touches to A are followedby touches to P 90% of the time. Likewise, the edgefromA to Dmight be weighted 10%. (In the �gure, wehave omitted the probabibilities wherever there is onlyone edge leaving a node; these are implicitly weighted100%. We have also neglected to specify a startingstate, which any Markov model must have.)If we use statistics in this way to weight the edgesbetween all pages that ever occur consecutively in atrace, we have constructed a �rst-order Markov of thesequential page accesses.We can use the resulting Markov model in two ways.One is to use it as a model to generate randomizedsequences of page references that reect these basicstatistics. The other is to reason about it formally,and infer what would happen (probabilistically) if wegenerated such a trace.Generating a reference trace from this Markovmodel is very easy. We just write a simple loop pro-gram which starts in some chosen state, then uses arandom number generator to pick between the suc-

cessor states, probabilistically, using the edge weightsfrom that node in the graph to bias the random selec-tion.That is, we \simulate" a program that resemblesthe real program; it keeps a pointer into the directedgraph, recording which state it's in|in this case, indi-cating which page it touched last|and selects amongthe outgoing edges randomly, but biased by theirweights, to determine the next state. The only mem-ory this simulator has of its state is the pointer intothe graph, and (implicitly) the connections betweenthe nodes. It doesn't remember which path it actuallytook to get to the current state; all that it \knows" isthat it followed some edge that connects to this state.There are several points to notice about this simpleMarkov model of reference sequences:� It only models extremely short-term regularities.It only knows the probability that a given stateis followed by a given other state, independent ofanything that happened previously.For example, it only encodes the fact that touchesto page A are followed by touches to page P 90%of the time. Other regularities in the access pat-tern are lost. For example, in the real trace, itmay be true that the program goes through al-ternating phases, where the touches to A are fol-lowed by touches to P 900 times in a row, andthen touches to A are followed by touches to D100 times in a row. This fact is lost in construct-ing the Markov model, and traces generated fromthe Markov model are extremely unlikely to ex-hibit this pattern.� It is randomized. The only regularities in theMarkov model are encoded the edges and the edgeweights. At any given moment, the transitionto the next state is biased, but otherwise ran-dom. This randomness eliminates some regular-ities (like the phase behavior), but it introducesothers. The randomization of state transitionsmay introduce new regularities.For example, in our hypothetical real program, itmay be fairly common for touches to A not to befollowed by touches to D for extended periods oftime (e.g., 900 times in a row). In a trace gen-erated from the Markov model, this is extremelyunlikely. A sequence including (say) 100 touchesto A will almost always contain a touch to D, be-cause each of those touches has a 10% chance of48



being followed by a touch to D, independently ofthe others.Notice that a �rst-order markov model may capturesome regularities in sequences of more than two suc-cessive events. The model of Figure 7, for example,captures the fact that a touch to page B is always fol-lowed by touches to C F and Q, because those nodeseach have only one outgoing edge. At nodes A, D,and Q, however, the choice of transitions is random-ized. In the real trace, there may be strong regular-ities in the sequence of the choices at these points,but the Markov model does not capture them. Thepaths taken by an actual program may include verydistinct patterns over hundreds or thousands of mem-ory references, but these patterns have been superim-posed in constructing the Markov model, leaving onlya weighted random choice at each choice point.Straightforward low-order Markov models are riskyfor modeling locality, in that they do not generallycapture the essential regularities at the appropriatetimescale. Very short-term patterns may be fairly re-alistic, but larger-scale regularities are often system-atically obliterated|such as recency skew at largertimescales relevant to most caches, and multiple work-ing sets that overlap in terms of blocks touched butoccur in distinct phases.Errors in recency skew are likely to a�ect results foralmost any caching policy. Errors due to the mixingof working sets are likely to especially a�ect results forprefetching and clustering policies.9.4.3 Higher-order Markov modelsOne way of increasing the realism of Markov modelsis to increase the \order" of the model. The states ina �rst-order Markov model reect individual events ina sequence, but higher-order models can reect longersubsequences. Unfortunately, this is often less usefulthan it seems at �rst. Whether it actually makes themodel \realistic" depends on what the model will beused for; for our purposes, it often doesn't.A second-order version of our Markov model of ref-erence sequences would have states that reect the lasttwo page references. Rather than having a state foreach page that is ever referenced, we'd have a state foreach pair of pages that is ever touched in succession.Figure ?? shows a simple second-order Markov modelof block referencing.In our example, rather than having a single statefor block A, we'd have a state AP, meaning that we'd
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CFQEFigure 8: A Second-Order Markov Model.just touched P, but had touched A before that, andanother state AD, meaning that we'd touched blockA and then D. The arcs out from AP then indicatewhich pages are likely to be touched after successivetouches to A and P. E.g., if R is touched next 90% ofthe time, an arc weighted 90% from AP will go to PR.(Recall that each node records the last two touches,but each transition indicates a single touch. A statethat ends with P will always be followed by one thatbegins with P.)This principle can be carried further, with third-order and fourth-order Markov models, and so on.Higher-order Markov models often generate se-quences that much more closely resemble the origi-nal sequences, over a small timescale. Still, however,unless the model is of very high order, large-scale reg-ularities will be lost and new, randomized regularitieswill appear in their places. Over the long term, the cu-mulative e�ect of many randomized choices introducesincreasing opportunities for error, with respect to anysystematicities in a real program's control structure.For memory hierarchies, the relevant regularities aretypically not at the scale of two or �ve or even a hun-dred successive memory references, but at the scale ofthousands, millions, or even billions of memory refer-ences.Markov models of such high order are quite di�cultto deal with in any general way, due to an explosion ofstates. For a Markov model of order n, we need a stateto represent each distinct sequence of n events. (Forhigh-order Markov models, a model \summarizing"a workload could be much larger than the referencetrace itself.)49



Another problem with high-order Markov models isthat they are often mathematically intractable. Oneappeal of Markov models is that they have certainmathematical properties that support reasoning aboutwhat would happen if the model were constructed. Insome cases, it is possible to reason about a Markovmodel without actually building an explicit represen-tation of the model itself (i.e., the directed graph).Unfortunately, such reasoning often has two weak-nesses:� It often requires auxiliary assumptions which maybe false. Considerable work has been done onergodic Markov models, which are well-behavedin in a certain mathematical sense [that will bedescribed later].� Such models are extremely di�cult to vali-date. Because the computations over high-orderMarkov models are often intractable, it is oftendi�cult to validate the assumptions required toensure that realistic models are in fact analyti-cally tractable.9.4.4 The Independent Reference IntervalModel|a low-order Markov model ofhigher-level regularitiesAnother approach to using Markov models is to avoidthe modeling of concrete program events|such astouches to particular blocks|and model somethingmore abstract, and more relevant to the problem athand. We refer to these more abstract properties as\higher level" regularities, but that is a separate issuefrom the \order" of a \higher order" Markov model.For example, if we are interested in the behaviorsof a program that are relevant to LRU caching, wemay abstract away from which blocks are touched,and model only the relevant facts about how blocksare touched. For LRU, what we generally care aboutis how often we touch blocks soon after the last touch,and how often touches to blocks are separated bytouches to many other blocks.The relevant statistics for this are the frequencyof touches to recency queue positions|concretely, anLRU distance histogram|rather than the frequencyof touches to the particular pages at those positions.The Independent Reference Interval Model (IRIM)is a zeroth-order Markov model of memory referenc-ing based solely on recency distributions. It has asingle state, connected to itself by arcs that reect the

frequencies of touches to (blocks at) di�erent recencyqueue positions.To generate a trace from such a model, we can loopto generate successive references, as with the IRM.To initialize the system, we can assign each page aposition in the recency queue.16 At each iteration, weuse the arc weights to bias a random choice amongthe edges, and emit a reference to whatever page is atthe corresponding recency queue position. This willgenerate a trace with the recency locality statisticsthat were used to construct the Markov model.[ To do this, we must add some machinerythat IRM doesn't have|we have to keep trackof the contents of the LRU queue, so that refer-ences to recency queue positions can be trans-lated into references to particular pages. Thisis still a Markov model, because the overallprocess is driven by a Markov process|the �-nite state machine)|but there is other stateinformation too... ]Notice that in constructing an IRIM model, all reg-ularities of the original program have been system-atically discarded, except for those that are relevantto purely recency-based caching policies such as LRU.The original page numbers have been forgotten, andthe model encodes exactly and only the recency distri-bution of the original trace|all of the other informa-tion in the resulting trace is random noise, suppliedby the Markov model.Any attempt to measure the performance of a non-LRU policy using a synthetic IRIM trace is likely tocontain serious errors. Any pattern in the originaltrace that the policy might have adapted to has beeneliminated, and the policy will only do well if it ex-ploits recency skew and deals well with random noise.At this point, you may be wondering what use isit?, and this is certainly an excellent question. At�rst glance, there doesn't seem to be anything thatthe IRIM model is good for that an LRU distance his-togram doesn't do at least as well. For analyzing LRUmemories, an LRU histogram can give exact miss rateswith no need for a Markov model, or a synthetic trace,or actual simulation runs. For many non-LRU mem-ories, the relevant information has been discarded|anon-LRU policy has a greatly reduced chance of beat-ing LRU, because an IRIM trace contains exactly and16How we do this doesn't usually matter much. We can alsostart with an empty queue, indicating that the cache is emptyat the start of the trace, and assign pages to queue positionslazily.50



only the information relevant to LRU-like replacementdecisions.17The main utility of the IRIM model is in providinga very simple and tractable model of locality, whichcan be compared against actual experimental resultsin enlightening ways.For example, a real trace and an IRIM trace de-rived from it may both be run through a simulator fora proposed cache. If the two results are very close,this suggests that the most important regularities inthe trace, for the purposes of that cache design, arethose captured by the IRIM model.18 If the resultsare not close, the existence of errors in the IRIM pre-dictions suggest that other interactions between thecache and real program behavior are signi�cant; thepattern of errors may give a clue as to which regular-ities are important.9.4.5 Fundamental limitations of MarkovmodelsSo far, we have discussed two limitations of Markovmodels:� They tend to capture only short-term regularitiesin sequences, unless the model is of an extremelyhigh (and likely impractical) order, and� Using higher-order properties discards other prop-erties that may be relevant, as when the IRIMmodel discards information about which blocksare referenced in which order.There is a fourth limitation, however: Markov mod-els only capture certain simple kinds of regularities.Real programs often exhibit strong regularities whichare not captured by any reasonable Markov model, ofany order. A Markov model is only suitable if theregularities it doesn't capture are known not to be rel-evant to the purpose for which the model is used.A Markov model is a �nite automaton, like regularexpression, and a Markov model shares many of the17This is not strictly true, because a non-LRU policy mightbe able to read the recency distribution better than LRU, and\beat it at its own game." Opportunities for beating LRU aregreatly reduced, however, because most regularities from theoriginal trace have been systematically eliminated. This in-cludes lower-level regularities such as particular sequences ofpage accesses and higher-level regularities such as systematicchanges in the recency distribution due to phase behavior.18Of course, this doesn't prove that no other regularities inthe original trace are relevant. There could be other regularitieswhose e�ects tend to cancel each other out.

limitations of a regular expressions in capturing inter-esting regularities. It has a �xed set of states, andno memory of the transitions that led to a particularstate. As such, it is extremely unlikely to generate cer-tain kinds of simple and common patterns which canbe generated quite easily with other simple machines.Regular expressions cannot be used to characterizemany important kinds of patterns, the best known be-ing nested expressions|for that, a context-free gram-mar (at least) is required|a stack memory is needed,to keep track of the level of nesting, and to notice whenthe ends of expressions are matched. For more so-phisticated patterns, still more sophisticated machinesare necessary, such as transformational grammars ormachines that aren't easily described in grammaticalterms at all [Cho56].A Markov model is used to generate patterns, butthe same limitation applies. Because it is random-ized (a nondeterministic automaton), a Markov modelmay generate almost any kind of sequence|within thepossibilities de�ned by the edges in the graph|but isprobabilistically unlikely to generate large, interestingpatterns that do not \look Markov."19Regular expressions capture mostly literal sequencesof tokens, entirely missing any patterns due to nest-ing or other not-strictly-sequential kinds of patterns.(They can capture certain kinds of repetition of literalsequences, but are otherwise quite limited.)Likewise, a Markov model is overwhelmingly biasedtoward certain kinds of randomized \approximatelyliteral" sequences, or mushings together of sequences.There is variation, due to randomization, but the vari-ation is unstructured and intrinsically irregular.Consider a Markov model of concrete sequences ofmemory accesses. Given a model of su�ciently highorder, or su�cient skew in the edge weights, certainliteral sequences are likely to occur repeatedly. How-ever, these realistic subsequences are will be linkedtogether in randomized ways to form the overall eventsequence.Consider two patterns of memory access which areplausible (and, we think, common):� Touching the same blocks in the same order re-peatedly;19It is rather like 600 monkeys typing away. Even with afairly high-order Markov model of the word sequence Shake-speare's texts, they are extremely unlikely to generate TwelfthNight|or anything with a remotely reasonable and sustainedplot structure|inmillions of years. In the meantime, they maygenerate quite a few new and very Shakespearean phrases oreven sentences, but that's beside the point.51



� Touching blocks �rst in one order, and then inthe opposite order.The �rst pattern is characteristic of many loops. AMarkov model may capture this pattern reasonablywell, especially if this is the only pattern of referencesto any of those blocks. In that case, the edges con-necting the states may directly reect the sequentialordering, and the lack of edges to other states mayensure that once one of the blocks is touched, the suc-ceeding blocks are touched in the right order.However, if any of those blocks is ever touched inany other way, the presence of arcs to other statesis likely to derail the Markov model, so that it sel-dom completes a whole loop through the set of pages.Where the original program may have characteristi-cally looped through the whole set or done somethingquite di�erent, the Markov model of the program willtend to loop through part of the set and get \derailed"by other edges.In terms of timescale relativity, this may have a ma-jor e�ect on locality. Where each of the real pathsthrough the page graph has de�nite implications forlocality, e.g., touching a certain number of pages ateach iteration of a loop, a random walk through thesuperimposed paths (Markov model) may be quite dif-ferent.The second pattern appears not to be uncommon,either. Some programs construct data structures inone order, then traverse them in the opposite order.(Perhaps because that's the chosen order of process-ing, as in many algorithms using a stack, or perhapsjust to free their storage.) This pattern may alsobe imposed by memory allocators that tend to reusememory in roughly LIFO order.Here a �rst-order Markov model may do extremelypoorly, because the edges in the graph go bothdirections|the direction of the �rst traversal of thedata, and the direction of the opposite traversal.Where the original program went all the way throughthe data in one direction, and all the way throughin the other, a �rst-order Markov model will tend towander around, going one way and then the other,because the arcs are weighted equally.This clearly has strong implications for localityof reference. Where the original program cruisedthrough the entire set quickly, twice, the Markov pro-cess will tend to wander aimlessly back and forth overa few items, reversing direction half the time, and justdrifting slowly one way or the other. A random walkover a Markov model can have very good locality, in

a way that does not reect the locality of the real pat-terns that were superimposed to generate the Markovmodel.Again, the presence of extraneous edges due to otherpatterns of access to the same data may derail theMarkov process. It may tend to mostly wander backand forth over a few items until it randomly selectsanother edge and goes o� and does something entirelydi�erent.A higher-order Markov model may do better here,because it will have states that implicitly representthe directions of the traversal. (For example, a second-order model will be in state AB after touching block Bgoing one direction, but in state BA after the oppositetraversal.) This may result in a tendency to traversethe entire set of blocks in one direction sometimes,and the other direction sometimes, with less chance ofgetting derailed; other edges into and out of the setmay be ignored because they do not enter the set \inthe right way," with the appropriate sequence of twoblock touches.Even with a higher-order Markov model, we are def-initely not out of the woods in terms of simulating real-istic program behavior, even for simple LRU caching.We might get loop-like or oscillating patterns that re-semble patterns in the original program, but there aremany opportunities for the Markov model to be unre-alistic.9.4.6 Problems with phase behaviorMany programs exhibit strong phase behavior, andthis is problematic for straighforward Markov model-ing techniques. Markov models are based on statisti-cal weighting of individual events, or short sequentialpatterns of events. Phase behavior is something else.If we model concrete memory referencing straight-forwardly using Markov models, we will lose informa-tion about the time-varying nature of block accesses.For example, a certain region of memory may be allo-cated to hold certain data structures during one phaseof a program, then later deallocated, and then reusedto hold entirely di�erent data structures during a laterphase. The resulting Markov state machine may in-clude edges for di�erent phases, superimposed.If the access patterns are very di�erent at a smallscale, then a higher-order Markov model may manageto distinguish between them, but if some pages areaccessed in the same sequence in di�erent phases ofprogram execution, the parts of the state graph thatrepresent di�erent phases' behavior will become con-52



nected. The resulting Markov process will tend toprobabilistically switch between the behaviors char-acteristic of one phase and those characteristic of an-other phase, when it encounters states that are sharedbetween two phases. This will tend to \mush to-gether" aspects of di�erent kinds of phases, and theresult may be quite di�erent from the original phasebehavior of the program being modeled.For example, if one (real) phase accesses a fairlysmall amount of data, and another accesses a largeamount of data, the locality characteristics of the lat-ter may dominate the program's locality characteris-tics. (The \small" phase may incur very few misses,while the \large" phase incurs very many.)Mushing the two kinds of phases together in theoverall (superimposed) state graph may tend to makea single kind of phase that accesses an intermediateamount of data. For a small cache, this may be worsethan having two very di�erent kinds of phases, be-cause it the cache may be too small to do well for anyphase. For a large one, it may be better than the orig-inal program, because all simulated phases �t in thecache. On the other hand, mushing the two phases'state graphs together may do something else entirely,depending on how the graphs happen to end up con-nected. It might be that all phases tend to traverseall of the data, making locality uniformly worse.It is reasonable to wonder how high-order a Markovmodel must be to keep the resulting state graph frombecoming \too connected." Since constructing theMarkov model e�ectively connects potential paths atshared states, reducing the number of states that areshared across (real) program phases should make it\more realistic": a higher-order Markov model willhave fewer shared states, since distinct paths will tendto have distinct states (encoding more consecutivetouches), and fewer spurious connections at nodes con-necting shared (short) subsequences.Unfortunately, the answer to this question is notreassuring. For a spurious connection to be createdin a Markov model of order n, it is only necessary fordistinct phases to touch the same n pages in the sameorder. This does not seem unlikely for any smalln|allthat is necessary is for both of the distinct phases toexecute some routine that touches the same n blocksin the same order. For example, two phases mightboth call a routine that traverses a shared linked listthat crosses block boundaries n times.2020The simplest example of this is a list whose elements are allin distinct blocks, but a list that crosses back and forth across

9.4.7 ErgodicitySome theoretical papers on the modeling of programbehavior assume that programs can be modeled by er-godic Markov models, i.e., Markov models whose be-havior is stable in the long run in a convenient math-ematical sense.In an ergodic Markov model, the chances of beingin any particular state are �xed in the long run. Thatis, if the Markov process is allowed to run for a longenough period, it has a nonzero chance of visiting eachstate, and over an even longer period, it will tend tovisit the di�erent states in de�nite proportions.21Sometimes, this assumption is clearly stated as aconvenience (in e�ect, \we hope they're ergodic, be-cause if they're not, we can't do the math"), but inother cases a stronger claim is made about the realismof this approach|it is strongly implied (if not stated)that the models are in fact realistic.Ergodic Markov models are \stable" in the sensethat their long-run behavior tends to show similar dis-tributions of visits to states within a su�ciently largetime window. Unfortunately, there are two problemswith ergodic Markov models for modeling real pro-gram behavior:a few blocks will trigger the same problem. Similar examplesarise for tree traversals and numerous other operations.21An example of a non-ergodicMarkov model is one in whichsome reachable subgraph has no out edges|once the Markovprocess enters that subgraph, it is \trapped" and cannot escapeto any other parts of the graph. A model with two or more suchsubgraphsmay be very unpredictable, in the sense that its long-run behavior depends on which subgraph it happens to wanderinto �rst.At this point, we should admit that we have oversimpli�edour discussion of Markov models somewhat, because there areother kinds of Markov models that may not be ergodic.In general, a Markov process is characterized by a �nite statemachine, but a Markov model may have some auxiliary state,\driven"by theMarkov process, as in the case of IRIM's recencyqueue.For example, in memory allocation studies, the order of aprogram's memory allocation and deallocation requests is oftenassumed to be describable by a Markov process, but the state ofthe heap memory is included in the overall model. (In general,even the former assumption appears to be systematically false,for several reasons [WJNB95].)Such a model may not be ergodic, even if the Markov pro-cess itself is ergodic. For example, if a Markov process gener-ates allocation requests in proportions that are not balanced bycorresponding deallocation requests, the memory requirementsmay increase without bounds. Thus, the Markov process maybe stable in the long run, generating probabilistically de�niteproportions of requests of di�erent types, but the Markovmodelmay not be, because the resulting heap memory usage is unsta-ble.53



� They may be unrealistically stable, because somereal programs are not stable in the appropriatesense, and� their stability may be of an unrealistic type.Many programs are simply not stable in anythinglike the sense of an ergodic Markov model, at leastwhere memory referencing is concerned. They havestriking phase behavior that di�ers in each phasein several respects, even if the phases represent thesame operation over di�erent data sets. (Considera compiler, compiling a �le of procedures, each ofwhich is typically di�erent in size and nesting of con-structs.) The relevant regularities may not be regular-ities in the sequence of accesses to particular memoryblocks, or even in strict sequences of accesses to logical(program-level) data objects.Even for programs whose behavior is unusually \sta-ble," an ergodic Markov model is likely to be a poormodel. A real program may exhibit certain kinds ofstability that resemble an ergodic Markov model, suchthat some ergodic Markov model could be constructedand give realistic results for a certain class of uses. Forexample, a program might happen to be structured insuch a way that over the long run, it tends to toucheach block with a roughly �xed frequency, and touchthings in the same short-term sequential order in �xedproportions.Even if this is true, however, this does not neces-sarily mean that a straight Markov modeling of theprogram will yield a realistic model. If we simply usethe relative frequencies of state transitions from eachstate to build a weighted graph, the resulting Markovmodel, being randomized, may tend to fall into a cer-tain stable kind of random walk, but that stabilitymay not reect the stability of the real program|thereal program may be stable for di�erent reasons, hav-ing to do with its high-level control structure.For example, consider a program with alternatingphases, one of which loops through a set of blocksseveral times in one direction, and another which loopsthrough the same data several times in the oppositeorder. This program's behavior is stable in the longrun, in the sense that it touches all of the looped-overdata the same number of times in the same directionsat each repetition of the pair of phases. This does notmean that at any given moment, it is equally likely togo either direction through the data.2222It will always loop, and never walk randomlyback and forth,

The deep problem here is that Markov modeling isfundamentally syntactic, and based on a fundamen-tally impoverished kind of syntax.9.4.8 General comments on Markov modelsIn general, real programs do not behave like Markovmodels. They simply are not stochastic processesdriven by random variables|they are executableplans, and plans have structure that is often complex,but usually not random. This structure is often notmathematically simple, and randomness only confusesthe issue. Complex, structured plans often do in factexhibit strong and simple regularities, but these reg-ularities are often not of the sort that Markov modelscapture.\Unknown" behavior cannot safely be modeled asrandom, for two reasons:� Unknown behavior may be patterned in importantways that a�ect locality. Replacing real behaviorwith randomness eliminates systematicities thatmay a�ect di�erent caching policies di�erently.� Random behavior itself has important conse-quences. Randomness is not \neutral" with re-spect to locality. Randomization can decreaselocality (e.g., by randomizing which pages aretouched) or increase it (e.g., by causing randomwalks over a narrow range of items).Given the foregoing, we believe that Markov mod-eling is a prima facie suspect approach to the mod-eling of program behavior. Of course, this does notmean that Markov models are entirely useless|justthat they must be used with extreme care.Markov modeling based on higher-order properties(such as recency skew, or other logical properties ofprograms) may be appropriate in many cases. Forexample, the IRIM model works �ne for a limited classof applications where the main relevant regularities areexpressible in terms of recency skew.In general, any model is limited by how well it cap-tures the relevant regularities for a particular kind ofpurpose, and relevance depends on the purpose.The use of Markov models, though very widespread,is far from a panacea. [ You can't just put a bunchof data into a mathematical formalism and turnas a zeroth-order Markov model might. It will always loopa �xed number of times in each direction, as even high-orderMarkov models generally won't.54



a crank to get a scienti�c model. Why do peo-ple keep thinking you can? Just because ev-erybody seems to do it?] In many cases, Markovmodels are mathematically tractable but scienti�callyill-considered. The main work in modeling must al-ways be understanding the phenomena to be modeled,and constructing a model that captures the relevantfeatures of the phenomena for a particular purpose.Program behavior is very far from being so well un-derstood as to yield simple, general, and predictivemathematical models.Markov models fail to directly capture many of theobvious regularities in real program behavior, becausereal programs are not �nite-state machines in any use-ful sense. Markov models can still be applicable insome cases, but applying them appropriately requiresunderstanding the phenomena well enough to cast theMarkov model in a reasonable way, e.g., by decidingwhat relevant features of a program state should countas a state in the Markov model, and whether in factthe regularities in the state sequences are reasonablymodeled by stochastic processes at all.Since the underlying processes|real computerprograms|are clearly not stochastic processes in gen-eral, the burden of proof is on the modeler to showthat the weaknesses of stochastic models do not mat-ter. It is necessary to explain why the non-stochasticproperties of real programs don't matter, and why arandomized model is \close enough."9.5 Modeling Fully Associative Caches9.6 Modeling Virtual Memories andMultiprogramming9.6.1 The Working Set Model9.6.2 Page Fault Frequency.9.7 Modeling E�ects of Associativity9.8 Modeling E�ects of ContextSwitching9.9 Modeling Instruction Streams9.9.1 The loop model9.10 Models for Clustering9.11 Hifalutin' Models[ I don't actually know what to call this sec-

tion... it's about models that are mathe-matically interesting, but usually based onvery dubious overgeneralizations, and prema-ture mathematization of things that are justnot mathematically well-behaved. ]9.11.1 Fourier Models[ These make a lot more sense than mosthighly mathematical conceptualizations of lo-cality, but they're not quite right. Basic ideais that you separate out the high-, middle-, andlow-frequency behavior, which is a nice step to-ward timescale relativity. The problem is thatthe Fourier transform isn't quite the right one,because it doesn't take into account the inter-actions between superimposed behaviors, and\frequency" in a harmonic sense is not usuallywhat's crucial. LRU transform is better, be-cause it's more directly related to caching con-siderations. Gap model is also better, becauseit's directly related to idleness. ]9.11.2 Fractal ModelsBasic claim is that program behavior is frac-tal, because miss rate curves or inter-miss gapsoften follow a particular kind of smooth, self-similar distribution.In a technical sense, this may often be true,if you look at a summary over a whole run ofa program, but it misses the structure of thetrace. It also misses the point that program be-havior is generally not fractal in any interestingsense. Some side-e�ects of program behaviormay look fractal if viewed through the wrongend of a telescope, but if you're going to blurthings that way, you're better of characterizingreal tradeo� curves rather than forcing theminto a trivializing mathematical model.Some of these papers are thoroughly bogus|claims about hyperbolic curves when the datavisibly don't �t those curves, due to real phasebehavior. Never well validated|usually one orthree traces.If these models are taken as describing cachee�ectiveness, they don't seem to o�er anythingbeyond rather bad curve �tting. If they'retaken as describing program behavior in anydeep sense, they're basically just wrong.55



10 Empirical Methodology[ blah blah... need to move some stu� frombeginning of previous section to here, now thatI've split analytic and empirical into separatesections. ]This simulation can be quite expensive in terms ofstorage costs for real reference traces (the input datato simulators), and in main memory and especiallyCPU time. Many hundreds of experiments may be runfor di�erent combinations of several design featuresand parameters, and each of these simulations mayrun for hours or days.[empirical stu� is preferred...]The high cost of extensive simulation using realtraces has motivated the development of several tech-niques to reduce the costs of tracing and simulation.These fall into several categories: tools for gatheringdetailed traces conveniently, data reduction tools forreducing the size of the stored traces without appre-ciably a�ecting the results of simulations using them,and e�cient simulation algorithms.10.1 Synthetic BenchmarksSimulation experiments sometimes are done using syn-thetic benchmarks in lieu of real data gathered by trac-ing real programs. Simple programs are constructedso that they exhibit behaviors thought to resemble realapplication program behavior; these synthetic pro-grams are then used in experiments. Such results mustbe interpreted with extreme caution. Often, these pro-grams reect their designers' intuitions about programbehavior, and these intuitions may be quite wrong.Worse, the synthetic programs often implicitly in-corporate unrealistic assumptions underlying commonanalytic models. The apparently \empirical" natureof these \experimental" results often lulls people intothinking that more is known about real programs thanactually is known. This is particularly common whensynthetic programs are applied beyond the scope forwhich they were originally designed.A benchmark may resemble real programs in cer-tain ways that are relevant to certain aspects of sys-tem design, but in other ways, synthetic programsgenerally say less than nothing about the behavior ofreal programs. In any case, benchmark performancemust be validated against the behavior of real pro-grams before experimental results can be taken veryseriously. In general, little validation of this sort is

done, so many experimental results are extremely du-bious. Even when a benchmark has been validatedwith respect to certain issues, it is still suspect forany purpose for which it has not been validated|in general, simple synthetic programs do not exhibitthe same kinds of irregularities and irregularities thatare relevant to interesting memory hierarchies. Likeanalytic models, the results of using them for novelpurposes are likely to be systematically wrong. (Aswe will explain later, many synthetic programs actu-ally approximate �rst-order Markov models|thoughthis is often not recognized|and exhibit many of thesame potential errors that the corresponding analyticMarkov models do.)This is not to say that synthetic programs are neveruseful. Synthetic programs often have the advantagethat they can be varied systematically, by changingparameters, and this allows experimentation with awide range of possible \program" behaviors. Such re-sults should be interpreted very cautiously, but can bequite informative, by indicating which features of pro-gram behavior interact with which aspects of memoryhierarchies. This can give interesting insight into thetradeo�s involved in system design, and point out im-portant aspects of real program behavior that mustbe studied.10.1.1 General Issues in Benchmarking10.1.2 Problems with Synthetic Data10.1.3 Synthetic Benchmarks and ClusteringSynthetic benchmarks have been used in most studiesof object clustering for object-oriented databases. Inpart, the use of synthetic benchmarks is a convenience;large data sets for database systems are hard to obtainand adapt to a novel database system. This is oftenespecially hard in object-oriented database systems,because the technology of object databases is rapidlyevolving, and systems are often incompatible.[blah blah blah]Most object database benchmarks use a few sim-ple data structures, but interconnect large numbers ofsmall objects in a random or semi-random manner.The algorithms in these benchmarks are fairly sim-ple, and typically follow pointer many pointer links insimple ways, e.g., using a breadth-�rst search of ob-jects reachable from some randomly-chosen startingobject.In e�ect, the randomized interconnections betweenobjects are similar to a Markov model, and tend56



to bias simulated \program" behavior toward simplestochastic behaviors. The behavior of a simple algo-rithm is primarily determined by its blind traversal ofa randomized graph.Because the locality properties of the programs areprimarily determined by the static connections be-tween the items in the database, rather than any in-teresting control structure in the program itself, as-sumptions about stochastic behavior are likely to betrue for these programs even if they are not true forreal programs.Equally important, the locality properties of theprograms operating on the data are likely to be ex-tremely strongly related to the static \locality" in theways that objects are created|if a pointer from oneobject to another exist, a blind traversal generally willtraverse that pointer.The odds of touching an object therefore dependalmost entirely on the stochastically distributed con-nections to it|there is very little phase behavior thatis not directly correlated to the shape of the graph ofconnections among objects.Several experiments have been performed to mea-sure the e�ectiveness of various object clusteringstrategies for these synthetic benchmarks, without val-idation against real programs. The results of theseexperiments should be interpreted very cautiously.OO1. In the OO1 (Object Operations One) bench-mark, the database consists primarily of a single in-dexed collection of part objects, plus connections be-tween the parts. The part objects are indexed by nu-meric keys, and the connections between the parts arecorrelated with their key values.Each part is connected via a directed link (pointer)to each of three other parts, chosen partly randomly.90% of the parts are to \nearby" parts, i.e., betweenobjects whose key values are within 1% of each other.The other 10%, however, connect to (uniformly) ran-domly chosen parts.The �rst thing to notice about this randomized in-terconnection scheme is that while it exhibits somelocality|90% of connections are local|it actually hasdisastrous e�ects on the locality of simple algorithmsoperating over the data. On average, every tenth linktraversal will access a randomly-chosen part object.Because of this, OO1 has extraordinarily poor localityof reference.(The OO1 designers were aware of this, at least tosome degree; they specify that traversals be executed

for both \cold" (empty) caches and for \hot" caches,which already contain the data to be traversed. ThusOO1 provides two extremes of behavior|very bad lo-cality, and very good locality|which can be used toroughly assess a system's performance under two verydi�erent kinds of use. Unfortunately, there is little in-formation to guide the interpretation of the results; itis unclear what an \expected" mix of these kinds ofbehavior is, and they often tend to get equal weight.We believe that results from OO1 have often been mis-interpreted in assessing the relative merits of systems.)This unusually poor locality may not matter forsome purposes, but for others it is crucial. For ex-ample, some object databases incur overhead at ev-ery pointer operation, while others incur overhead pri-marily at page faults. In general, the \�ne-grained"systems incur several instructions overhead at eachpointer traversal (and perhaps each pointer compari-son), while the \coarse grained" ones may incur thou-sands of instructions of overhead at a page fault. Ifthe frequency of pointer traversals is several orders ofmagnitude higher than the frequency of page faults,the coarse-grained techniques are more e�cient. Fornormal programs, this is almost always true. (Recallthat on a modern computer, a program that takes apage fault every million instructions is probably pag-ing heavily).For object databases, this is less clear23, but it isclear that OO1's lack of locality raises serious ques-tions. It seems to exhibit two extremes of behavior,but [little middle-ground behavior...]OO1 has been used for experiments in clustering,but the structure of the benchmark itself tends to favorcertain clustering strategies over others. OO1 seemsto be unrealistically Markov-like in two ways:� The important links are of a single type (frompart to part) and tend to be traversed in a uni-form way|all outgoing links from a part are usu-ally traversed. The major variation is just in theweighted (90% nearby) randomness of the links.There are no important kinds of data objects thatare traversed during some operations but not oth-ers.This stresses the �rst half of the clustering prob-lem (keeping together things that are accessed to-gether) at the expense of the second half (keepingapart things that are accessed di�erently).23[blah blah... databases tend to be I/O bound, butOODB's are especially likely to be used for more CPU-bound tasks like CAD... cite Tiwary]57



� The only useful information in the graph of partobjects is the connectivity of the graph. The skewin the heat of the parts and links is due to thepresence of densely-connected sets of parts, whicharise from the biased random distribution of links.This ensures that there will be a strong correla-tion between the static structure of the graph andthe dynamic locality of the (simple) traversals ofthe graph.Further, it means that locality characteristics arelikely to be consistent, especially with respect tothe relative heat of links. If an object or link ishot during one traversal, it is very likely to be hotduring any other traversal that encounters it atall.The structure of OO1 lends itself to certain kindsof clustering techniques, and not others, in ways thatmay not be realistic.� Because all phases of program execution aresimilar (e.g., a series of breadth-�rst traversalsfrom random parts), the skew in object andpointer heat is likely to be fairly consistent acrossoperations.24This may favor simple connectivity- or heat-basedschemes over schemes which use heuristics basedon object type, because there is not much usefultype information to exploit.� The fact that all operations are data-intensiverather than compute-intensive maymake the edgeweights an unrealistically close approximation ofactual importance for caching. (In a real pro-gram, some edges or objects may be very hotin phases where locality is excellent, but stillnot particularly important for clustering. Cooleredges traversed at widely-spaced times may bemore important.)This may favor simple heat-based schemes rela-tive to either simple connectivity-based schemesMore generally, the fact that the benchmark is sosimple ensures that only certain things matter to clus-tering; since the other characteristics of the bench-mark are random, there is little opportunity for so-24E.g., breadth-�rst traversals starting at di�erent parts, butencountering the same densely-connected subgraph, or a singletraversal that encounters the same densely-connected subgraphmultiple times.
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