Locality of Reference,

Patterns in Program Behavior,

Memory Management,

and Memory Hierarchies

VERY rough, partial, incompletely-baked draft.
DO NOT REDISTRIBUTE

(Comments welcome.)

Paul R. Wilson

Abstract

Locality of reference is crucial to the performance of
modern computers, but is actually poorly understood.
In this paper, we survey issues in locality and memory
hierarchy design, attempting to bring together what
is known, correct common misconceptions, and clarify
what is not known.

We present a unified approach to locality, based on
the concept of timescale relativity, which simply says
that some patterns in program behavior are relevant
to issues of caching, and others are not, and that the
difference depends crucially on the timescale relevant
to a particular cache.

Memory hierarchies use a kind of online, adaptive
algorithm to control caching; such algorithms cannot
be studied properly without some understanding of
the regularities in the “data” (program behavior) they
must process.

We attempt a vertical unification, showing that lo-
cality of reference results from regularities in the struc-
ture of programs, and from regularities in how memory
allocators map program objects onto virtual address
space.

Contents

1 Overview

1.1
1.2

1.3
1.4

Motivation
Problems in Memory Management Re-
search
Who Should Read this Paper, and How
Structure of the Paper

2 Basic Locality of Reference

2.1
2.2

2.3

2.4

Memory Hierarchies
Temporal and Spatial Locality
2.2.1 Temporal Locality and Replace-
ment Policies
Spatial Locality and Block or

2.2.2
Where does locality come from?
2.3.1 Multiple Levels

2.3.2 Programmers’ Problem-Solving
Strategies

2.3.3 Problem Structure and Input
Data

2.3.4 Compilers’ object layout choices

2.3.5 Placement choices by allocators,

compilers and linkers
2.3.6 Memory Re-allocation
2.3.7 Pragmatic Factors
Some Useful Concepts, Terminology,
and Techniques
2.4.1 Localities and Working Sets . . .

2.4.2 Latency and Transfer Time . . .

2.5

2.6

2.7

2.8

2.4.3 Balancing Latency and Transfer
Time. 12

2.4.4 Compulsory and Capacity Misses 13

2.4.5 Basic Profiling and Simulation

Techniques 14
Some “Typical” Program Behavior . . . 15
2.5.1 Simple Heat (Hot/Cold Refer-

ence Skew) 15
2.5.2 Recency Skew and Recency Dis-

tributionso 16
2.5.3 Phase Behavior 16
Demand Fetching Policies and Time-
scale Relativity 16
2.6.1 The Holy Grail: Optimal Re-

placement 17
2.6.2 LRU and Looping Behavior . . . 17
2.6.3 LRU and other kinds of refer-

encing behavior 20
2.6.4 Frequency-based Replacement . . 20
265 FIFO 22
2.6.6 Random 22
2.6.7 Loop-detecting 23
2.6.8 Gap-based replacement 24
26.9 OPTorMIN 24
Methodological Issues in Replacement
Policies 24
Toward a Theory of Replacement 24

2.8.1 Block Histories and Adaptation . 24
2.8.2 Phase Behavior, Aggregate Lo-
cality Properties, and Adaptation 24

Prefetching 24

3.1

3.2

3.3

3.4

Prefetching vs. Large Blocks and Clus-
tering 24
Programmer-directed vs. Compiler-di-
rected vs. Dynamically-predicted Au-

tomatic Prefetching 24
3.2.1 Explicit Directives 24
3.2.2 Compiler-directed Prefetching . . 25
3.2.3 Dynamic Prediction 25
Block size and Fetch Policy 25
3.3.1 Effects of Increasing the Fetch

Size 25

3.3.2 Effects of Flexibility in Fetch Size 26
3.3.3 Increasing Flexibility of What is
Fetched. 26
3.3.4 Increasing Flexibility of Eviction 26
3.3.5 Fetch Size vs. Overall Memory
Size, and Timescale Relativity . 27
Overlap and Bandwidth Limitations . . 28

341 Overlap 28

3.4.2 Bandwidth Limitations 29
3.5 Prefetch-always vs. Demand Prefetch-

ing (Prefetch-on-miss) 29

3.6 Replacement Policy for Prefetched Blocks 30

4 Clustering to Improve Spatial Locality 30

4.1 The Ubiquity of Clustering 30
42 A Unified View 30
4.3 Goals of Clustering 31

4.3.1 Timescale Relativity in Clustering 32
4.3.2 Keeping Semi-together Items

Semi-together 33

4.3.3 An Example Clustering Problem. 33

4.4 Offline vs. Online Clustering 34
4.5 Sources of Information to Guide Clus-

tering oL 35

4.5.1 Access Sequences 35

452 Profiles 36

4.5.3 Reachability via Pointer Links . 36
4.5.4 System- and Application-specif-

ic Declarations 38
4.5.5 Discussion 38
4.6 Some Clustering Schemes 38

4.6.1 On-the-fly Reorganization of
Virtual Memory Pages on Disk. . 38

4.6.2 On-the-fly Reorganization of
Objects in an Object-oriented

Memory Hierarchy. 38
4.6.3 On-the-fly Reorganization

of Objects during Incremental

Copying Garbage Collection. . . 39
4.6.4 Profile-driven Reorganization of

Disk Cylinders 39

4.6.5 Reachability-based Clustering
in Copying Garbage Collectors . 40
4.6.6 Reachability- and Type-based
Clustering in Copying Garbage
Collectors. 40
4.6.7 Allocation-order and Size-based
Clustering in Conventional
Memory Allocators. 40
4.6.8 Profile-driven Organization of
Code and Statically Allocated

Data at Link Time. 40

4.7 Discussion 40

5 Architectural Considerations 40
5.1 Basic Memory Hierarchy Organization . 40
5.1.1 Interactions Between Levels . . . 40

5.1.2 Basic Structure of High-Speed
Caches
5.1.3 Basic Structure of Virtual
Memories

5.14 DiskI/0O
5.2 High-speed Cache Memories

5.2.1 Associativity

5.2.2 Write Policy and Write Buffering

5.2.3 Split Instruction and Data Caches

5.2.4 Subblock (Sector) Caches

5.2.5 Virtual vs. Physical Indexing
and Tagging

5.2.6 Prefetching

5.3 Virtual Memory

5.3.1 Translation Lookaside Buffers
(PTE Caches) and Traps
5.3.2 Implementing Replacement
Policies
5.3.3 Variable-Space Policies and
Process Scheduling
5.3.4 Page Tables
5.3.5 Memory-mapped files
5.3.6 Shared memory and mapping . .
5.3.7 Sharing and Protection Issues . .

5.4 Disk Storage Management

5.5 Some Novel Memory Systems

5.5.1 Flash RAM
5.5.2 Distributed Caching and Dis-

tributed Virtual Memory .

5.5.3 Compressed Caching

Toward a Deeper Understanding of Ref-

erence Locality

6.1 Where Does Locality Come From? (re-
visited) ..o
6.1.1 Clustering
6.1.2 Checkpointing
6.1.3 Allocation and (Re-)Initialization
6.1.4 Indexing

6.2 Varieties of Locality

6.2.1 Hot/Cold Locality
6.2.2 Mostly-LIFO locality
6.2.3 Mostly-FIFO locality
6.2.4 Address-sequential locality

6.2.5 Repeated-sequence locality

6.2.6 Similar-sequence Locality

6.3 Locality at Different Levels of Abstrac-

tlon.
6.3.1 Locality in Data.

40
40
40
40

40
40
40

40

40

40
40
41
41
41
41
41
41

41
41

41

41
41
41
41
42
42
42
42
42
42
42
42

6.3.2 Program-level Locality of Refer-

ENCE. © . . e 42

6.3.3 Memory-level Locality of Refer-
ENCE 42
6.4 Effects of Allocator choice 42
6.4.1 Memory Reuse 42
6.4.2 Effects on Clustering 42
6.4.3 Nonmoving Allocation 42
6.4.4 Garbage Collection 42
6.4.5 Nonmoving Allocation 42
6.4.6 Compaction and Regrouping . . 42
6.5 Data Structure and Algorithm Choice . 42
6.5.1 Arrays 42
6.5.2 Lists 43
6.5.3 Trees. 43
6.5.4 Hash Tables 43
6.6 Checkpointing 43
6.6.1 The Importance of Checkpointing 43

6.6.2 Checkpointing at the Data
Structure Level 43
6.6.3 Checkpointing at the Virtual

Memory Level 43
6.6.4 Interactions of Memory Alloca-
tion and Checkpointing 43
6.7 Effects of Programming Model 43
6.7.1 Sharing vs. Copying 43

6.7.2 Process Models and Interpro-
cess Communication 43
6.7.3 Persistence

Algorithmic Analyses for Data-Depen-
dent Algorithms 43

7.1 Tree Algorithms 43
7.2 Graph Algorithms 44
7.3 Compression Models 44
Data Regularities, Algorithmic Regular-
ities, and Locality of Reference 44
8.1 Multiple Levels of Organization 44
Analytic Models 44
9.1 “Analytic” Models? 45
9.2 The Roles of Models 45
9.3 Common Weaknesses 45
9.4 Simple Markov Models 46
9.4.1 The Indepen-
dent Reference Model—a trivial
(zeroth-order) Markov model of
memory referencing 47
9.4.2 A simple (first-order) Markov

model of reference sequences . . 47

9.4.3
9.4.4

Higher-order Markov models
The Independent Reference In-
ter-

val Model—a low-order Markov
model of higher-level regularities
Fundamental limitations of

9.4.5

Markov models

9.4.6 Problems with phase behavior
9.4.7 Ergodicity
9.4.8 General comments on Markov
models
9.5 Modeling Fully Associative Caches .
9.6 Modeling Virtual Memories and Multi-
programming
9.6.1 The Working Set Model
9.6.2 Page Fault Frequency.
9.7 Modeling Effects of Associativity
9.8 Modeling Effects of Context Switching .
9.9 Modeling Instruction Streams
9.9.1 Theloop model
9.10 Models for Clustering
9.11 Hifalutin’ Models

9.11.1 Fourier Models
9.11.2 Fractal Models

10 Empirical Methodology
10.1 Synthetic Benchmarks
10.1.1 General Issues in Benchmarking

10.1.2 Problems with Synthetic Data

10.1.3 Synthetic Benchmarks and
Clustering
Fundamental Problems in De-
signing Benchmarks
10.2 Trace-driven Simulation
10.2.1 Memory-level Traces vs.
ject-level Traces
10.2.2 Gathering Traces
10.2.3 Efficient Simulation for Inclu-
sion-preserving (“Stack”) Algo-
rithms

10.1.4

49

51
52
53

54
99

99
99
99
99
99
99
99
99
99
99
99

56
56
56
56

1 Overview

This paper discusses several interrelated issues in the
study of locality and algorithms:

e locality of reference in programs and its effect im-
plications for memory hierarchy design,

e principled design of memory hierarchies,

o locality properties of data sets more generally (i.e.,
not just locality of reference, but regularities more
generally) and their importance for the algorith-
mic analysis of common data structures such as
binary trees, and

e locality effects of algorithm and data structure
choices, bringing together the issues of algo-
rithms’ responses to regularities in data and the
resulting effects on locality of reference.

1.1 Motivation

1.2 Problemsin Memory Management
Research

We believe that the study of locality of reference has
been hampered by a lack of a clear qualitative con-
ceptual framework and a corresponding absence of a
taxonomy for understanding program behavior as it
affects memory hierarchies. Similarly, some algorith-
mic analyses are unduly limited by simplistic assump-
tions about the regularities—or, more often, the lack
of them—in input data sets. We believe that by clar-
ifying some of the basic issues in the analysis of algo-
rithms, we can make it easier to conduct more mean-
ingful empirical study of algorithms, and also provide
a useful framework for more realistic formal analysis.

One of our guiding hypotheses is that many kinds
of programs and data exhibit at least one of a small
set of common regularities, and that progress in the
design and analysis of algorithms depends on catego-
rizing those regularities, and relativizing analyses ac-
cording to basic categories of input data. Conversely,
failure to recognize the presence of common regulari-
ties in data prevents the development of more refined
analyses and valid empirical methodology.

Too frequently, algorithms whose performance is
dependent on regularities in their inputs are re-
garded as too difficult to analyze formally, and only
their simplest properties are proved. Typically, re-
sults are given for worst-case, best-case, and “aver-

age” or “expected-case” performance. (Significantly

“expected” performance is usually for unpatterned
or simply-patterned random inputs, which are often
quite unrealistic.) Beyond that, empirical evaluations
are used to assess their performance on real data.
Unfortunately, the empirical evaluations are often
quite limited—and difficult to draw general conclu-
sions from—because variations in performance are not
properly attributed to significant interactions between
algorithms and the data they process. Worse, many
“empirical” evaluations embody crucial simplifying
the assumptions that systematically bias the results,
especially through the use of pseudo-random synthetic
input data, and these biases often go unrecognized.!
We believe that the situation with many kinds of
data-dependent algorithms is less grim than it often
appears: many kinds of data exhibit similar gross
regularities which can be exploited reliably, and the
search for relevant regularities can be constrained by
analyzing the algorithms’ own sensitivities to common
regularities—or insensitivities to other possible regu-
larities. Thus it should be possible to derive a fairly
simple and useful taxonomy that allows characteri-
zation of the purposes to which an algorithm may be
put, and its appropriateness for the purpose. Likewise,
recognizing which regularities are relevant allows anal-
ysis of data sets, to determine which algorithms may
be appropriate for different kinds of data in practice.

1.3 Who Should Read this Paper, and
How

[NOTE to the readers of this (early) draft:

Hi friends. Welcome to my brain dump on
locality, which some of you have asked to see.

I'm not sure exactly what form this material
will eventually take.

I hope to have a complete draft of most of it
within a month or two, and package it up as a
technical report. By that time, it’ll probably
be a little less casual (and in places, a little less
blunt).

Parts of it will be incorporated into the book
I'm writing on memory management, which
will cover allocators, garbage collectors, and
persistent object stores, as well as memory hi-
erarchies. That book will be a combination of

1For a striking example, see [WINB95]; use of synthetic
traces has been common in the evaluation of dynamic storage
allocation algorithms, with little or no validation—introducing
strong biases toward some kinds of allocators and away from
others.

an advanced textbook and a research mono-
graph.

Some of the later sections may not get writ-
ten soon, or may be pulled out into separate
papers, for example the part about algorith-
mic analysis, which is not written at all and
needs some experimental work done.

The part about architectural issues may be
abbreviated, but part of it is already written in
the form of course notes that I need to struc-
ture and clean up. Likewise, I’ve got some
fairly detailed notes on analytic models, so that
part should be fairly easy to write.

A Note about citations: this draft is very
short on specific citations, but that will get
fixed. The final version will probably have 120-
200 citations, like my other big surveys. This
version has a lot of citations to my own work,
partly because I can do them off the top of my
head, and partly because those papers have lots
of citations of others’ work related to this pa-

per. |

1.4 Structure of the Paper

The rest of the paper is structured as follows.

Section 2 discusses basic issues in locality of ref-
erence caching policies. (While the overt content is
primarily about locality of reference, the same basic
ideas can be generalized to apply to many kinds of
data-dependent algorithms, including tree algorithms,
compression algorithms, result caching, code caching
in on-the-fly compilers, etc.) A key concept, time-
scale relativity is introduced, to help explain when
events are relevant to the performance of a system,
and which events are likely to make good predictors
of those events.

Section 3 discusses prefetching and clustering, blah
blah...

Section 4 discusses clustering of objects to improve
spatial locality... blah blah

Section b explains issues specific to different kinds
of memory systems: high-speed hardware caches, vir-
tual memory, file systems, etc. This section may be
skimmed by readers not interested in the details, but
may serve as a helpful reference for understanding
later sections.

Section 6 attempts to explain deep issues in locality
of reference—where it comes from, how locality in pro-
grams can be made visible to the memory hierarchy,

etc. We explore effects of overall system structure,
programming style, and data structure and algorithm
choice.

Section 7 attempts to generalize the notions of lo-
cality to include regularities in data other than mem-
ory reference streams. These ideas may be helpful in
analyzing a variety of algorithms whose performance
depends on the patterns in input data, such as adap-
tive tree algorithms, compression algorithms, etc.

Section ?? [relates data regularities to pro-
gram regularities, program regularities to
object-referencing regularities, and object-
referencing regularigies to memory-referencing
regularities... trying to bring it all together.]

Section 77 discusses techniques for the modeling
and simulation of memory hierarchies. A major point
in this section is that simple mathematical models are
often only narrowly applicable, or unsound. Markov
models, in particular, are extremely weak and often
mis-applied. We also discuss sound techniques, in-
cluding detailed tracing and simulation.

Section 7?7 [presents conclusions]

2 Basic Locality of Reference

In this section, we discuss locality of reference in mod-
erate depth. We begin with the traditional notions
of temporal and spatial locality, which have been the
main ideas of locality for several decades. We then in-
troduce the concept of timescale relativity, which we
believe is essential for understanding policy choices,
and use it to explain the relative performance of vari-
ous policies. We then proceed to refine the simple no-
tions of temporal and spatial locality to include more
subtle characteristics of access patterns, and suggest
their implications for memory hierarchy policies.

2.1 Memory Hierarchies

[blah blah... define hierarchy, levels, conven-
tion that up means smaller/faster and down
means larger/cheaper.

Almost all existing memory hierarchies are based
on caching recently-used pages or blocks of data in
fast memory. Memory is composed of several levels of
increasingly fast and increasingly expensive kinds of
memory. Because of their high cost per unit of storage,
the faster (“higher”) levels are generally smaller and
the slower (“lower”) levels are much larger.?

2Some authors reverse this sense of “higher” and “lower.”

A simple memory hierarchy might include three lev-
els: disk storage used for virtual memory paging space,
main memory to hold recently-used pages in dynamic
RAM (DRAM) (“main memory” or “core”), and high-
speed cache memory to hold recently-used blocks in
still faster static RAM (SRAM) (“high-speed cache
memory”). High-performance machines typically add
one or two more levels of still faster static RAM on
the CPU chip itself (“on-chip cache).

For a typical workstation, the paging area is likely
to be scores of megabytes of disk space, divided up
into fixed-size pages of about 4 kilobytes. Main mem-
ory (DRAM) is used to cache pages that have been
touched recently; the rest are left in the paging area on
disk until they are touched again. The first-level high-
speed cache is likely to be about a half a megabyte,
divided into blocks of about 32 bytes. (Page and block
sizes are generally a power of two in size, e.g., 4096-
or 8192-byte pages, and 16-, 32- or 64- byte cache
blocks.)

We will use the term “block” generically, to refer to
either virtual memory pages or cache memory blocks.

One fact that is important to notice is that each
level of the memory hierarchy typically has many hun-
dreds or even thousands of block frames. For exam-
ple, a 32-megabyte main memory can hold 8,000 pages
of 4 kilobytes each, a 512-kilobyte cache memory can
hold sixteen thousand blocks of 32-byte blocks each—
and even even a 32-kilobyte on-chip CPU cache can
hold a thousand 32-byte blocks. As we will see later,
this will have important consequences for replacement,
prefetching, and clustering policies.

2.2 Temporal and Spatial Locality

The most common fetch policy is to fetch blocks as
needed from slower storage; when a page that is not
resident in fast memory is touched by a program (e.g.,
referenced by a load or store instruction), the pro-
gram is halted briefly and the data are loaded from
slower memory into fast memory. This is called de-
mand fetching, the point at which the program at-
tempts to access a nonresident page (and implicitly
“demands” that it be fetched) is called a miss or a
demand fault.

For virtual memory, this is typically done by trap-
ping to software and having the software perform the
disk T/O. (This is called “page fault handling.” A
small amount of dedicated hardware detects references
to nonresident pages and forces a trap to software that

implements the caching policy.) Misses are handled by
dedicated hardware for most high-speed cache memo-
ries, because cache misses are much more common.

When a miss occurs, space must be reserved in fast
memory for the demanded block. The address space
is conceptually divided into fixed-sized blocks of data.
The actual storage for a block in high-speed mem-
ory is called a frame. (For virtual memory caching,
pages of main memory are called page frames; we will
call blocks of high-speed cache memory block frames
for consistency, though they are traditionally called
“cache lines.”)

The frequency of misses is one of the most important
measures of how well a memory hierarchy i1s working.
The miss rate is the percentage of memory references
that cause demand faults.

For a virtual memory, the miss rate is typically ex-
tremely low—very roughly one in a million references
is a miss (page fault), and the rest are accesses to
pages resident in main memory. Virtual memory miss
rates must be very low for a system to have reaons-
able performance; disk accesses are far, far slower than
main memory accesses—about five orders of magni-
tude slower. A typical disk takes at least several mil-
liseconds to respond to a request for a page, so it can
only respond to only about 100 requests per second,
perhaps 200 for a very fast disk. On the other hand, a
fast CPU can execute 100 million instructions per sec-
ond or more (up to several hundred) and roughly one
in five of them are loads or stores. Thus the number
of references per second is roughly 50 million or more;
if just one in a million of these is a miss, the system
will spend about half its time executing instructions
between faults, and half its time waiting on the disk.

If the miss rate is much higher, the machine will
spend most of its time waiting on the disk, because
it will typically only execute instructions for a short
period before faulting and waiting on the disk for sev-
eral milliseconds. For example, a miss rate of one in
10,000 may seem good, but it is actually quite bad.
It corresponds to executing about 50,000 instructions
between page faults. At 100 million instructions per
second, executing 50,000 instructions only takes about
a half a millisecond—and then the program must wait
for several milliseconds for the disk. Actual program
execution speed will then be an order of magnitude
slower than the CPU speed. If this situation is chronic,
most computer owners will buy more main memory,
to bring the I/O costs down and program speed up,

making the machine more “balanced.”

The situation for cache memories is rather differ-
ent. The difference between cache memory speeds
and main memory speeds is much smaller (roughly
a factor of between 5 and 50, depending on the cache
level). For the fastest (e.g., on-chip) caches, there is
usually another level of cache that usually services a
miss without having to go all the way to main mem-
ory. Cache misses are therefore far cheaper than page
faults; miss rates are much higher for these small mem-
ories, often on the order of 1 in 100 or 1 in 1000 mem-
ory references.

2.2.1 Temporal Locality and Replacement

Policies

Temporal locality is the most often-discussed local-
ity property: most programs tend to access the same
blocks of memory repeatedly over relatively short pe-
riods of time, so keeping a block in fast memory for
a while 1s likely to pay off. If the block is touched
again soon, it can immediately be accessed quickly,
rather than being fetched from slow storage. If a block
goes unreferenced (untouched by loads or stores) for a
while, it is evicted to slower storage, so that the block
frame of fast memory it occupies can be used to cache
another block.

When a block is faulted on, it must be put some-
where in fast memory. A block frame 1s selected,
and its contents are overwritten with the values of
the faulted-on block. Typically, the block frame al-
ready holds values for some other block that had been
cached there, and its contents must be saved in slower
memory. In the general case, this requires writing the
contents of that block back to slower storage. If that
block’s values have not changed since it was faulted
in, however, the same values are still held in slower
storage (the block frame contains a “clean” copy of
the block in slower storage). In that case, the values
in the block frame can simply be overwritten. If the
block has been modified—is “dirty” —the up-to-date
values must be written back to slower storage before
the block frame can be used to cache the faulted-on
block.

At a fault, the memory system must decide which
block frame to use to hold the demanded block. Since

3This is not always true. For example, many database sys-
tems are “I/O-bound”, spending most of their time reading and
writing disk data and very little time actually performing com-
putations over the data.

this usually requires “replacing” one block with an-
other, we refer to the policy for choosing a page to
replace a replacement policy. (Alternatively, we can
refer to this as eviction and an eviction policy.)

Most common replacement policies are approxi-
mations of LRU—Least Recently Used—replacement.
When a block is faulted on, the block chosen for evic-
tion is the one that has not been touched for the
longest time.
frames are always the n most recently used blocks.

Actual replacement policies are usually an approz-
tmation of LRU, not true LRU. This is because true
LRU replacement turns out to be expensive to imple-
ment, but good approximations can be implemented
quite cheaply.

LRU replacement works rather well for a large vari-
ety of programs, and is by far the best known replace-
ment policy; it 1s the standard by which other policies
are judged. Later, we will explain why LRU works
well most of the time, and suggest ways in which its
performance might be bested. We will also explain
why LRU has some convenient properties for study-
ing program behavior, even if the intent is to design a
rather different policy that works better.

Thus the contents of a cache with n

2.2.2 Spatial Locality and Block or Page Sizes

Another crucial locality property is spatial locality of
reference. Most programs not only tend to touch the
same words of memory repeatedly, but tend to touch
words that are near recently-touched words in the ad-
dress space. This is called “spatial” locality, because
the ordering of words in the address space provides
a hint as to which words are likely to be touched
It would be more accurate to call this “spa-
tiotemporal” locality, because it has a crucial tempo-
ral component—a word is likely to be touched if it is
near (spatially, in the virtual address space) something
that has been accessed recently (temporally).

Spatial locality is the reason that memory systems
typically use pages or blocks, rather than simply trans-
ferring individual words of data from one level of the
memory hierarchy to another. If we were to transfer
individual words to and from disk in a virtual mem-
ory system, the system would be unusably slow—each
word transferred would take several milliseconds. By
transferring (say) 4 kilobytes at a time, it is possi-
ble to load data into fast memory much, much more
quickly—roughly a thousand times faster.

Spatial locality 1s a more subtle topic than it may
seem at first glance, because 1t is not independent of

soon.

temporal locality.

One important fact to notice is that spatial locality
for one block size often appears as temporal locality
for larger block sizes—i.e., touches to nearby blocks
for a given block size often become repeated touches
to a single larger block if a larger block size is used.

Another important subtlety is that when programs
are written in high-level programming languages, they
are written in terms of references to fields of language-
level data objects—not memory addresses. How the
program-level locality is mapped onto memory-level
locality depend strongly on the compiler’s layout of
objects and on the allocator’s placement of those ob-
jects in memory. This will be discussed in depth in
Section 77.

2.3 Where does locality come from?

While locality of reference is a crucial property for
computer systems, and a lack of it would effectively
bring the computing world to a halt, little is actu-
ally known about it. In particular, the sources of lo-
cality have never been examined in a systematic and
thorough way. By and large, locality is regarded as
a mysterious property, which computer architects and
operating system designers exploit.

There are a few exceptions to this generalization,
of course; in some cases, the locality characteristics of
particular kinds of simple and regular algorithms are
quite well understood. By and large, however, only
simple special cases are understood very well at all.

In the following, we’ll sketch a simple conceptual
framework for understanding what locality is and why
1t exists.

The first question about locality of reference should
be what is locality?. We've given a couple of simple
examples of locality properties, namely simple tempo-
ral locality and simple temporal locality. In our ter-
minology, these are just two of many kinds of locality,
which is a necessarily vague concept. Locality is a very
general term that means something like “regularities
in program behavior,” especially exploitable regulari-
ties, and especially regularities that are exploitable for
caching purposes.

2.3.1 Multiple Levels

The second question about locality of reference should
be reference to what? A normal memory hierarchy ex-
ploits program references to wvirtual addresses; spatial
locality 1s a regularity in the referencing of things that

are nearby in the virtual address space; the memory
hierarchy exploits those regularities in it’s caching pol-
icy, i.e., in its mapping of virtual storage to physical
storage.

Notice that programmers don’t usually write pro-
grams at this level of abstraction. Most programs are
written in high-level languages, with references to pro-
gram objects such as scalars, arrays and records. Thus
there 1s a logical level of program locality—the pat-
tern of a program’s references to language-level en-
tities like records—which is somehow mapped onto
virtual address space by programming language im-
plementations.

So there are at least two important levels of locality,
and the locality exploited by memory hierarchies 1is
a function of at least two things: how programmers
write programs, and how language implementations
map language-level behavior onto the virtual address
space.

There are other, higher levels as well, however. Soft-
ware is typically structured in layers, and each layer’s
implementation can affect locality.

Programmers choose language-level representations
of conceptual, application-level entities. For example,
a programmer might choose to represent a set of peo-
ple using a list, a tree, or a hash table of records;
each of these has very distinctive locality effects at
the at the level of references to individual program
objects. For sophisticated algorithms and data struc-
tures, there may be several levels of mapping between
the conceptual objects (and high-level algorithms) and
the language-level objects (and low-level algorithms).

2.3.2 Programmers’ Problem-Solving Strate-
gies

Divide-

and-conquer strategies. Programmers often solve
programming problems by dividing them up into sub-
problems, dividing those up into smaller subproblems,
and so on, until very small problems can be solved in
actual pieces of code. This hierarchical plan structure
often affects memory-referencing patterns, causing fre-
quent references to data objects during certain phases.
Sometimes, the hierarchical task structure is reflected
in the pattern of repeated references to memory loca-
tions, but sometimes it is not. A particular kind of
problem-solving phase of a program may always ref-
erence the same data structures, or it may reference
different data structures, but in the same way.

Loops. Many programs loop to repeat the same ac-
tion over and over again; this may cause repeated ac-
cesses to the same memory locations, or it may cause
different memory locations to be accessed in the same
way. Loops often have a major effect on locality; loops
over a small amount of data may repeatedly touch the
same items, resulting in excellent temporal locality.
Loops over larger amounts of data have very different
effects.

More complex control flow.

2.3.3 Problem Structure and Input Data

Some programs’ referencing behavior is heavily depen-
dent on the characteristics of their input data. A com-
piler, for example, may act very differently when com-
piling a file full of small functions using simple con-
structs than it does when compiling a file containing
a few very large, complex functions. An interactive
word processing program may behave very differently
when given different commands.

In these cases, the regularities in the inputs may
be a source of regularities in the program’s behav-
ior, which 1s not evident from an examination of the
programs. A compiler’s behavior may be largely deter-
mined by the coding style of its input source programs,
and a word-processor’s behavior is strongly affected
by 1ts users’ work habits—e.g., how often they simply
type in text, and when they perform commands like
searches or reformatting over the entire document.

2.3.4 Compilers’ object layout choices

Compilers affect spatial locality by grouping fields of
objects together in some order. Most compilers lay
out the fields of a record (or class instance) in consec-
utive words of memory; accesses to multiple fields of
the same object are accesses to nearby memory. This
grouping is especially important for large arrays [blah

blah...]

2.3.5 Placement choices by allocators, com-
pilers and linkers

The locality of references to executable code and stati-
cally allocated data are strongly affected by compilers
and linkers. Most compilers organize machine code
into object files in roughly the order procedures are
defined 1n source files, and lay out statically-allocated

data in a similar order. Linkers may combine the con-
tents of object modules in a somewhat different order
in executable files.

Usually, compilers and linkers approximately pre-
serve the order of definition of variables, and the order
of definition of procedures, but may group the vari-
ables from multiple files together, separate from the
code.

The preservation of definition ordering seems to
have relatively good effects on locality, because the
definition ordering often reflects the problem-solving
strategy used by the program. The hierarchical struc-
ture of execution turns out to result in good spatial
locality of accesses to the code and variables, because
it 1s often strongly correlated with the plan structure
used in problem solving and the phase structure of
program execution.

2.3.6 Memory Re-allocation

Memory allocation strategies have a major effect on

locality. [blah blah blah...]

Stacks. Stack allocation often has excellent locality
of reference. An important example of this is the ac-
tivation stack for a typical program in a conventional
language; local variables and control information are
allocated in activation records when procedures are
entered, and deallocated when the procedure is ex-
ited. Typically, the stack height does not vary dramat-
ically over a short period of time—the stack grows and
shrinks repeatedly by one or a few activation records,
reusing the same area of memory for a very large num-
ber of activation records. The active part of the ac-
tivation stack—the top—may be touched millions of
times per second, and stay cached in fast memory.

Stacks created by programs for other purposes often
have similarly high temporal locality; if allocated in
contiguous memory, as activation stacks usually are,
spatial locality is likely to be excellent as well. A single
virtual memory page may contain the whole stack, or
the active part of a large stack, and that page may be
referenced very, very often.

Even if the stack 1s represented as a linked list in
heap memory, temporal locality is very likely to be
excellent; spatial locality is likely to be excellent as

4 Linkers also often group literal data together, and initial
values of global variables together, separately from uninitial-
ized variables. This separation allows one copy of code and
constants to be shared between multiple processes running the
same program.

well, depending on the heap memory allocator used
and the pattern of allocation that creates the stack.

Roughly stack-like use of heap memory. Heap
memory allocation can have major effects on locality;
for many programs, heap data account for most of the
memory used, and references to objects on the heap
are the dominant locality consideration.

Many programs use heap memory in roughly stack-
like ways, at the program level, even when they are
not using stack data structures. Many objects are
quite short-lived, and freed—that is, their storage is
returned to the free memory pool—very shortly after
they are allocated. This is often true because most ob-
jects are created and used to solve small subproblems
(near the leaves of the problem decomposition graph),
and then discarded.

An allocator can take advantage of this by reusing
recently-freed memory in preference to memory that
has been free for a longer time.

Notice that in this case, the program itself may have
“bad” locality of reference, in that it touches many
different objects over a relatively short period of time,
but its actual locality of memory referencing may be
excellent; the allocator can map different language-
level objects onto the same virtual address ranges over
time, so that the same memory is referenced over and
over.

Reuse of language-level objects for different
conceptual objects. In a similar way, program-
mers may reuse memory by mapping multiple concep-
tual objects onto the same language-level object over
time.

For example, in FORTRAN or C programs, it is
common to use a statically allocated array many
times, holding different data each time. Consider a
FORTRAN program that repeatedly reads data sam-
ples from a file into a 1024-element array and performs
an FFT on each set of 1024 samples. Conceptually,
each set of samples is a different entity, but the pro-
grammer has mapped them onto one language-level
array.

More generally, [blah blah blah...]

Use of different language-level objects for the
same conceptual objects.

10

2.3.7 Pragmatic Factors

Limitations of existing hardware.

Limitations of existing software.

2.4 Some Useful Concepts, Terminol-
ogy, and Techniques

In this subsection, we will introduce some convenient
terminology and techniques for studying memory hier-
archies; and for the study of algorithms and sequence
behavior more generally.

2.4.1 Localities and Working Sets

The term “locality” was used originally used (in a
caching context) to refer to a specific collection of
items used by a phase of a program—it was a “count”
term (e.g., “this locality” vs. “that locality”) rather
than a mass term (e.g., “this much locality” vs “that
much locality”).

The basic 1dea, and it’s still a good one, was that
program phases tend to preferentially touch certain
items, and the set of item touched by a phase is called
a “locality.” Notice that a locality is a temporally re-
lated set of 1tems—things that tend to be accessed at
about the same time, not a spatially related set in
terms of address space. The items in a locality may
be spread across the address space, but still be “neigh-
bors” in time, in terms of the ordering of programs’
accesses to data.

More recently, the term “locality” has generally
been used in a more flexible way, as we do in this
paper, and the old sense has been largely superseded
by the term “working set.” A working set is the
set of items “worked with” by a phase of program
execution—a set of items that tends to be touched at
about the same time.

There is also a very specific technical sense of the
term “working set,” defined by Denning. We will dis-
cuss this technical sense later in the paper, but for the
time being we will use the intuitive sense, in which a
working set (or locality) is a set of blocks (or objects)
that tend to be accessed “together,” during a program
phase.

It is important to realize that working sets (or lo-
calities) are not necessarily disjoint sets—the working
sets of two phases may overlap, if both phases refer-
ence some of the same items.

11

Working sets are also timescale-dependent. If we
look at program’s behavior over short timescales rel-
evant to small caches, we may notice that it tends to
have different working sets for different short phases.
If we look at the same program over a large timescale,
we may notice that there are larger phases with larger
working sets, and the working sets of the larger phases
include the working sets of the smaller phases.

Working sets may be more or less distinct. A certain
kind of program phase may always access the same
items. On the other hand, different occurrences of the
same kind of phase may access some of the same items,
but some different ones too.

2.4.2 Latency and Transfer Time

The cost of fetching a block from slower storage has
two components: latency and transfer cost.

Latency is the “startup time” required to initiate
the transfer, e.g., detecting that a block is not present
in fast memory, signaling the slower memory device,
and whatever that device must do to prepare to trans-
fer the data. Generally, latency is independent of the
amount of data to be transferred.

Transfer time is determined the amount of data
transmitted and the rate at which data can be trans-
ferred once the transfer has been started, e.g., how
quickly successive bytes or words of data can be
streamed from slower to faster memory. (This rate
is usually known as “bandwidth,” by analogy to the
information rate of a communications frequency band.
Bandwidth (transfer rate) is inversely related to trans-
fer costs—the more bandwidth you have, the faster
you can transfer data.

In general, it is usually easier to increase band-
width than to decrease latency. In solid-state com-
ponents, latency is often determined by physics—the
speed of swithching and signal propagation, and ulti-
mately bounded by the sizes of devices and the speed
of light. In moving-media memories (e.g., disks), it is
quite difficult to make physical parts move extremely
quickly due to mechanical problems.®

In contrast, increasing bandwidth is often easier,
though expensive, through the brute-force approach

5This is not to say that latencies do not decrease with im-
proving technology—e.g., increasing levels of integration so that
the distance between components on a chip is shorter. It’s just
that such engineering is fairly difficult, even if cost is no object.
For example, a disk head’s inertia increases with the square of
its velocity, making it difficult to double the speed at which it
moves without introducing mechanical problems such as bounc-
ing against the limit of its “throw” and taking longer to “settle.”

of adding parallel hardware. By using more wires (or
on-chip traces), solid state devices can communicate
more bits simply by multiplying increasing the width
of the data paths. By using more disks, it is possible
to read more data off of disk in a given amount of
time.%

Latency and transfer costs of magnetic disks.
For a magnetic disk, the main contributors to latency
are the seek time and the rotational latency. The
seek time is the time it takes to move the magnetic
read/write head to the appropriate track of the disk,
and the rotational latency is the time spent wait-
ing until the desired block of data comes under the
read head. Both of these costs are are actually rather
variable—depending on where the read head is posi-
tioned relative to the desired track, and the rotational
position of the disk when it gets there. The overall
access time may vary by a factor of two or three, e.g.,
from 3 to 8 milliseconds for a fast disk. (For most
discussions, however, the access time is assumed to be
a constant “average” time and variations are ignored.

Other time costs may also contribute to latency,
such as page fault handling (trap handling, plus the
cost of the routines that decide what command to is-
sue to the disk, etc.). Due to the extreme difference
in speed between moving parts and solid-state switch-
ing devices, these costs are usually much less than the
cost of the disk seek and rotation.

The transfer rate of a magnetic disk is essentially
the rate at which bits can be read off of (or written to)
the disk, once the desired bits begin coming under the
read/write head. This is determined by the density
of bits within tracks, and the rotational speed of the
disk. A very fast disk can generally deliver bits at
a rate of roughly four megabytes per second, or one
four-kilobyte page per millisecond. Slower disks may
support half that transfer rate.

Latency and transfer costs of solid-state mem-
ories. For solid-state memories, the main contribu-

6 These approaches are not always easy, however. Increasing
the width of data paths may introduce other costs, by increasing
the amount of power needed and exacerbating electrical isola-
tion and heat dissipation problems, or by increasing fanouts
of circuits, which may interfere with making them as fast as
possible. Increasing the number of pins used to communicate
between chips may seriously decrease the yield of a manufac-
turing process as well as exacerbating power problems, because
pins are one of the greatest sources of failure. At the disk level,
increasing the number of disks used puts further demands on
the communication channels between disks and memory.

12

tors to latency include signal delays and setup times
within memory modules.

A main (DRAM) memory module is usually inter-
nally structured as a logical 2-dimensional array, and
an entire row of bits is read from this array into a
special buffer. (Once the row has been read into the
buffer, successive words from that row can be sent very
quickly.) [blah about static RAM...]

The transfer times of silicon memories are mostly
due to limitations on signaling speeds because of the
physical characteristics of the connections. blah blah

blah...

2.4.3 Balancing Latency and Transfer Time.

An important issue in memory hierarchy design is bal-
ancing latency and transfer time. In general, there is
some tradeoff between them; the exact tradeoff is de-
pendent on spatial locality, but an approximate trade-
off works fairly well for most programs.

By making the block size larger, we can transfer
more data at each miss. If spatial locality 1s good,
this will load the needed data into fast memory more
rapidly, by reducing the number of misses—and the
contribution of latency costs to the overall cost of
transferring data. If spatial locality is excellent, then
transfer costs will not go up much at all—essentially
the same amount of data will be transferred, in fewer
and larger units.

On the other hand, if spatial locality is poor, having
a too-large block size will increase costs in two ways:

e Increased transfer times. If much of the extra
data transferred at each miss turns out not to
be used before it is evicted, we will unnecessarily
increase the transfer time for miss handling.

e Cache pollution and increased misses. The fetch-
ing of useless data will pollute the cache, evicting
more useful data. If those data are evicted before
being touched again, when otherwise they would
not be, then the overall miss rate will increase, in-
directly incurring both latency and transfer costs.

In general, the block size should be chosen to trade
off between two potential problems: fetching too little
data and thus requiring more misses to load data into
fast memory, or fetching more data than necessary and
perhaps polluting the cache.

This is somewhat oversimplified, however, because
we may prefetch extra blocks—initiating fetches of sev-
eral blocks at once—rather than transferring one block

at a time. (In that case, the block size may be smaller
than the “fetch size,” 1.e., the amount of data fetched
at each fetch. The block size may be chosen in part
with respect to the cost of maintaining the mappings
that record which blocks are where in fast memory,
and in part to provide flexibility in fetching.)

A block 1s really a unit of address translation—we
map a block of virtual address space to a block frame
in fast memory—which can be decoupled from the unit
of data transfer by transferring more (or perhaps less)
than one block at a time. Prefetching memory systems
may transfer more than one block at a time, increas-
ing the feich size without increasing the block size.
For the moment, however, we will ignore this compli-
cation, which is discussed in depth in Section 3.

In deciding on the block size (or, more generally, the
fetch size), spatial locality must be taken into account.
The ideal block size for programs with good spatial
locality is much higher than for programs with bad
spatial locality, because the extra transfer time at each
miss is much more likely to pay off. Unfortunately, the
block and page sizes are generally determined by the
hardware designers, and “reasonable” sizes are chosen;
for any given application, this may be a good size, or
it may not.

In general, a good choice of fetch size is one where
the latency and transfer times are roughly balanced.
For example, suppose we choose a block size so that
the latency and transfer time are exactly equal. In
that case, a program with very good spatial locality
will perform more (and smaller) fetches than would
be ideal, but the overall cost will never be more than
a factor of two worse than with very large blocks—the
same amount of transfer time will be incurred fetching
small blocks as large ones, and the extra latency cost
will be less than or equal to that.

Increasing fetch sizes beyond this “breakeven” point
will rapidly reach a point of diminishing returns, even
for programs with excellent locality.

For example, consider a cache with a transfer time of
16 units and a latency of 16 units, for a total miss cost
of 32 units. Doubling the transfer size will increase
the transfer time to 32 units; in the best case, excel-
lent spatial locality will ensure that the total transfer
time is unchanged—for each two transfers we’d done
previously, we’ll do one that takes twice as long. In
this best case, the overall latency cost will be cut in
half by halving the number of misses.

Another doubling will decrease the latency cost by
half again, but the overall (remaining) cost by at most

13

a sixth, because the transfer cost is not reduced. After
a few doublings, the decreases in latency cost are neg-
ligible, because the the overall contribution of latency
costs 1s already small, and the transfer time domi-
nates.

In contrast, the transfer cost per miss increases by
a factor of two with each doubling, and for programs
with poorspatial locality, the consequences may be se-
vere, due to increased miss service times and increases
in misses due to cache pollution.

Conversely, decreasing the block size far below the
balance point runs similar risks—if spatial locality
is good, halving the block size will straightforwardly
double the miss rate; a very small block size will only
pay off if spatial locality is very poor.

In general, the block size should be chosen to be
near the balance point, but perhaps somewhat larger
if programs generally exhibit good spatial locality.

Assessing the effects of block size and replace-
ment policy [blah blah... miss rate is not a
good figure of merit because it leaves out trans-
fer costs...]

2.4.4 Compulsory and Capacity Misses

Traditionally, misses for an LRU replacement policy
are divided into two categories:

e (apacity misses, due to the cache being too small
to hold blocks between touches to them, i.e.,
misses to blocks that have been evicted and then
touched again, and

e Compulsory misses, due to the first touches to

blocks.

A miss due to the first touch to a block is called
compulsory because no cache would be large enough
to hold the block—any cache would suffer a miss for
the block, independent of replacement policy or size.

A miss at a repeated touch to a block is called a
capacity miss because for some large cache size, the
LRU replacement policy would be able to cache the
block between touches and avoid the miss.

Later, [in the next section? Or move much
later?], we will refine this categorization of misses.
In some situations, compulsory misses are expensive,
but in other situations, they may be very cheap. The
concept of capacity misses also needs further refine-
ment, especially when different replacement policies

are being compared, because different baselines make
sense in different situations.

2.4.5 Basic Profiling and Simulation Tech-
niques

Reference Traces and Trace-driven Simulation.
Studies of locality and memory hierarchy design are of-
ten done in simulation, rather than by building actual
memory hierarchies and actually running programs in
them. It is much easier to build a simulator than a
real computer, and it is much easier to experiment
with variations in a software simulator than in actual
hardware.

To perform simulations, memory-referencing behav-
ior of real programs can recorded in a trace file, as a se-
quence of trace records that record what the program
does that is relevant to the memory hierarchy. For
most purposes, that is just a record of the references to
memory—Iloads and stores to particular addresses—
and perhaps instruction fetches. The contents of the
memory locations are not actually relevant, because
most memory hierarchies do not adjust their caching
to the contents of memory, only to the pattern of vir-
tual addresses that is accessed.

Typically, reference traces are gathered by execut-
ing programs in simulation, using an interpreter that
interprets machine code and simulates an actual CPU.
Alternatively, programs may be tnstrumented by mod-
ifying their instruction sequences to not only perform
the normal computation, but to record the memory-
referencing that would have been done by the unmod-
ified program.”

Once gathered, the reference trace can be processed
by a memory hierarchy simulator which simulates the
relevant actions of a given memory system when each
event is encountered—e.g., moving a page from slow

"The best example of this is Larus’ QPT tool, which rewrites
an executable program to make a self-tracing version [BL92].

Cmelik and Keppel's [CK93] amazing Shade tool (for
Sun SPARC machines) incorporates both interpretive and
executable-rewriting features, using a dynamic compiler to
speed interpretation by decompiling, annotating and recompil-
ing code on the fly; these rewritten fragments are executed di-
rectly to avoid the cost of true interpretation. (A cache of these
rewritten code fragments is maintained, so that the costs can be
amortized over repeated executions of the same code fragment.)

A different approach to self-tracing code is taken by Wilson
and Balayoghan’s VMtrace tool, which slightly modifies pro-
grams to trace themselves using virtual memory access protec-
tion; most pages are kept access protected, and a fault handler
records the order in which they are faulted on [7].

Blah blah on limitiations of software tracing, and
hardware approaches... BACH, etc.

14

to fast memory, changing the LRU ordering of pages,
evicting a page, etc.—and records the events that
would affect performance. As an optimization the ref-
erence trace may be fed directly into a simulator, per-
forming simulation “on the fly” while a program is
being traced. This requires re-tracing the program for
each simulation, but avoids the need to actually store
the trace in a file. Since reference traces may contain
billions of records, this can save considerable storage
space.

The LRU distance string. Using an LRU simu-
lator, which maintains a record of the LRU ordering
of blocks, a reference trace can be transformed into
an LRU distance string. Where the original trace in-
dicates the order of touches to particular words (or
blocks) of memory, the LRU distance string records
the LRU positions of those blocks at each touch.

That 1s, for each reference in the original string, the
distance string records how long it has been since the
last touch to that block, in terms of the number of
other blocks touched in the meantime. It is therefore
a fairly direct reflection of the actual temporal local-
ity of a trace. It more directly reflects the patterns
of repeated touches to blocks, independent of which
blocks they are touches fo.

A simple way to transform the reference trace into
a distance string is to process the records in the trace
sequentially, maintaining a data structure that records
the LRU ordering, for example, a sorted linear list or
tree. (The list only records the block numbers, not
their contents.) FEach reference in the trace is pro-
cessed by searching the ordered list and determining
the position of the block in the list; this LRU position
is emitted as an item in the distance string. In addi-
tion, the just-touched block’s record is moved to the
end of the list, making it the most-recently-touched
item in the ordering and pushing intervening items
one position the other end.

We will refer to the list (or other data structure)
recording the LRU ordering as an LRU queue, be-
cause items are inserted at one end of the list, and get
pushed along as other items are inserted. This is not
a simple queue, however, since items may be searched
for, have their position recorded when they are found,
and be removed from the queue so that they can be
reinserted at the end.

Optimized implementations are possible, of course,
for example using a balanced or adaptive binary tree
to implement the linear ordering “queue.”

Note that if we fix the length of the LRU queue, and
delete items when they reach the head of the queue,
we can easily construct a simple simulator for an LRU
replacement policy. The queue ordering represents the
mechanism for scheduling blocks for eviction. Pages
that go untouched for a long period drift toward the
head of the queue, while pages that are touched are
moved to the tail, and saved from eviction.

The length of the queue represents the size of fast
memory, i.e., the number of block frames, and the
queue ordering represents the LRU ordering main-
tained by the replacement policy; a touch to an item
that is not yet in the queue counts as a miss, and a
touch to an item that is in the queue counts as a hit.

A slight improvement lets us use this basic imple-
mentation strategy to simulate many sizes of memory,
not just one, during a single pass through a trace. No-
tice that the elements of an LRU queue of m blocks
are a subset of the elements of an LRU queue of m+1
blocks. For example, the five most recently touched
pages include the four most recently touched pages,
plus one more. A longer LRU queue is always a prefix
of all shorter LRU queues, so we can combine them
into a single arbitrarily-long queue which represents
any number of fixed-lenth queues by combining their
tails.

The LRU distance histogram and LRU miss
histogram. The LRU distance string can be sum-
marized by the LRU distance histogram. This is sim-
ply a histogram that records how many times each
LRU queue position was touched during the process-
ing of a trace, or during an interesting subinterval
within the trace.

The LRU distance histogram can be computed from
the LRU distance string, by simply counting the num-
ber of hits to each queue position in the entire string.
This can also be done on the fly, during LRU process-
ing of the trace, by simply incrementing counters in
an array (one element for each queue position) rather
than actually emitting the distance string.

The LRU distance histogram is interesting because
it shows the locality characteristics of a program in a
way that is independent of any particular memory size,
but which can be interpreted with respect to any mem-
ory size of interest. For any LRU replacement policy,
it records which events are relevant to which sizes of
memory. For an LRU memory of size m, touches to
LRU queue positions 1 through m represent hits, and
for touches to positions m and above represent misses.

15

Because of this, we can trivially compute the num-
ber of misses for every memory size, by simply adding
up the numbers of hits to higher LRU queue postions.

...it’s a simulator... blah blah... stack prop-
erty... ...blah blah... what “typical” distance
and miss histograms look like... ... caveats...

2.5 Some “Typical” Program Behavior

Most programs exhibit some common locality prop-
erties, which it will be useful to distinguish. We will
introduce some terms, which should easily be under-
standable from the preceding discussion.

2.5.1 Simple Heat (Hot/Cold Reference

Skew)

Hot/cold reference skew is perhaps the simplest kind
of locality—a program may touch some items much
more often than it touches others. For example, the
activation stack of a program may stay within a single
virtual memory page, and that page may be touched
every few instructions throughout the whole execution
of a program. Other pages may be touched much less
often.

All other things being equal, it is better to
cache “hot” (frequently-touched) blocks than to cache
“cold” (infrequently-touched) blocks. In many cases,
however, other things are systematically not equal,
and caching based solely on “heat” (the number of
times a block is touched) does not work well.

In real programs, it 18 common for some blocks to
be very hot and others quite cold. Over a run of a pro-
gram, some blocks may be touched millions of times,
and others once or a few times, with still others being
some intermediate number of times.

On average, the hot/cold distribution of blocks
for programs in general is roughly exponentially
decreasing—very few blocks are very hot, and few
blocks are warm, and very few many blocks are much
cooler.

For any given program, however, the distribution
may not be at all smooth. There may be distinct
sets of blocks which have similar heat, and no blocks
with intermediate heat values. (For example, there
might be very hot, hot, and cool blocks, but no blocks
with heat values intermediate between those, i.e., no
medium-warm or cold blocks.)

Figure 7?7 shows a heat distribution for the
pages during a particular run of a particular program
([which program?]). The horizontal axis represents

Figure 1: Heat Distribution

Figure 2: Recency Distribution

address space (block number) and the vertical axis
represents the total number of touches to each block
during short segments of program execution.

2.5.2 Recency Skew and Recency Distribu-
tions

Another common property of real programs is recency
skew—at any given time, a program is much more
likely to touch a block that it has touched recently
than one that it has not touched for a long time. This
is the principle behind LRU caching.

More generally, a program or a program phase may
tend to touch things again after touching a certain
number of other things. For example, a simple loop
over 100 blocks may touch the 100th most recently
touched block, but never the 70th or the 121st most
recently touched block. This is what the LRU dis-
tance histogram illustrates—the recency distribution
of a program.

Figure 2 shows the recency distribution for [same
program], over an entire run. Figure 2

2.5.3 Phase Behavior

The hot/cold skew or recency skew of a program often
varies over time. If we look at simple heat histogram
or LRU distance histogram for a particular program
phase, it may look very different from the histogram
for the entire program run.

Figure 3 shows the evolution of block heat for the
same program as in Figure 3. Here the horizontal axis
is time, increasing toward the right. (We have divided
execution into “time slices” of a few [million] instruc-
tions.) The vertical axis represents adddress space ad-
dress space (block numbers). (This corresponds to the
horizontal axis of Figure 1.) The gray scale represents
the number of touches to each block in a particular
unit of time, which corresponds to the vertical axis of
Figure 1. The gray scale is logarithmic—slight differ-
ences in tone represent fairly large differences in heat.

Figure 3: Heat Distribution Over Time

16

Figure 4: Recency Distribution Over Time

Figure 4 shows the evolution of the recency distri-
bution over time in a similar fashion. (Time increases
to the right, and MRU queue position increases to-
ward the top.) Again, the gray scale is logarithmic, so
visible patterns represent fairly strong regularities.

[ramble about patterns in figures a little]

2.6 Demand Fetching Policies and

Timescale Relativity

A replacement policy is implemented by an adaptive
algorithm, whose job is to predict which blocks of
memory are likely to be needed soon, and which are
not. The only information a general-purpose replace-
ment policy can use to make this prediction is the
actual string of references up to the point where a
fault occurs. This string may contain many complex
patterns, and a replacement policy could conceivably
exploit any information in the string. In designing
a replacement policy, the goal essentially to filter the
reference string to find highly predictive information—
and the robustly predictive information. Not only is it
desirable to have a policy that makes accurate predic-
tions, but the heuristics should work for a wide variety
of programs’ access patterns and seldom (or, ideally,
never) fail disastrously.

In general, we can view the replacement policy’s job
as having three parts:

1.

detecting regularities in past references to mem-
ory,

. using the detected regularities to predict future
references, and

using the predictions to determine a good choice
of which blocks to cache and which to evict.

[We're talking about demand fetching poli-
cies only, here, no prefetching. The ideas
will be generalized later, in the discussion of
prefetching and clustering. |

[Blah blah... can screw up on any of these...
few studies separate out the three issues...
don’t have a good grasp...

We’ll talk about optimal and LRU before
talking about other policies... these are inter-
esting because they provide an interesting pair
of baselines... optimal because it’s optimal...

LRU because it’s common, implementable, and
competitive with optimal. Any good policy
must resemble LRU to some degree...]

2.6.1 The Holy Grail: Optimal Replacement

The replacement policy’s main task is to discriminate
between blocks that are worth keeping in memory, so
that they can be touched again without a fault, and
blocks which should be evicted sooner to make room
for “more important” data.
policy is be one that could accurately predict the time
of the next touch to each block, and keep in memory
those that will be touched soonest. This policy is not
implementable in practice, because complete accuracy
for arbitrary programs requires being able to see into
the future; this is not possible in a real system where
the memory hierarchy must respond to program be-
havior as it happens. (However, it turns out to be
easy and useful to implement such an optimal policy
in simulations, as will be discussed later.)

Note that the ideal (demand fetching) policy only
discriminates between blocks that will be touched soon

The 1deal replacement

and those that will not be touched soon, where “soon”
is relative to the memory size. For a memory of size
m, the 1deal policy retains the m blocks that will be
touched soonest, and evicts the blocks that will only
be touched later. Blocks that will only be touched
later (after touching m distinct blocks) can be evicted
at any time—e.g., at the next page fault. Such a
block is doomed not to be touched again until after
it has been evicted anyway, so its space might as well
be made available for caching something else in the
meantime.

[explain or fwd ref. explanation of why this
is always true]

Thus once the last reference to a block for a while
occurs, 1t can safely be evicted immediately to make
space. Here, “for a while” means for a period during
which m or more other pages are touched.

Note that if a page will be touched sooner than that,
it doesn’t matter much how much sooner—it will be a
mistake to evict it. The page will simply be evicted
and then faulted in again when touched, so it will cost
exactly one fault to make this mistake once.

Note also that if a block will not be touched for
m block faults or longer, it doesn’t matter how much
longer. It doesn’t matter exactly which of these blocks
will be touched in what order. If all of them will not
be touched “for a while” that’s long enough that they

17

all should be evicted. The blocks can be evicted in any
order, as needed to make room for faulted-on blocks.

From this we can see that even a perfect replace-
ment policy doesn’t need to make very precise predic-
tions with respect to future access patterns, or even
the times until the next accesses to blocks: it only
needs to accurately determine whether a block is in
the “touched soon” set or the “not touched soon” set.

If we assume that the prediction function is accu-
rate, the only situation in which precision matters to
the effectiveness of the algorithm is when there is a
choice between blocks that will be referenced at roughly
the same time, and both are touched after roughly m
other blocks are touched.

From this we can conclude several basic things
about how to construct a good replacement policy,
which approximates the ideal:

e Details of future access patterns don’t usually
matter much.

Details of past access patterns only matter if they
are good predictors of the crucial characteristics
of future access patterns.

The crucial information about access patterns
is timescale relative, i.e., keyed to the memory
size in question, and when the program will have
touched that many distinct pages.

The replacement policy needs only to make a
binary distinction for each page—to keep it or
evict 1t. This judgement is made relative to
other pages, however; it depends on how many
other pages will be touched sooner (but not which
ones).

2.6.2 LRU and Looping Behavior

Most replacement policies are based on a simple kind
of heuristic, where touches to blocks are used to pre-
dict touches to blocks, and no complex or subtle pat-
terns are recorded or used for prediction. LRU, for
example, only records the relative ordering of the last
touches to the cache-resident blocks. All other infor-
mation about previous patterns of touches to those
pages is ignored, and no information is retained about
blocks that are not currently in the cache. This
turns out to be surprisingly effective, despite the ob-
vious (self-imposed) poverty of information used by
LRU. Clearly, the small amount of information that is
recorded turns out to be highly predictive.

Equally important, LRU ignores information that
usually doesn’t matter much to its task of prediction.
Other, more sophisticated policies have been designed,
based on reasonable intuitions, but they have gener-
ally failed to outperform LRU, and usually do signif-
icantly worse—sometimes disastrously so. LRU turns
out to adapt quickly to programs’ changing behavior,
and is seldom “distracted” or “fooled” by patterns
that foil its heuristics. It is dumb, so to speak, but
this can be effective because it doesn’t “outsmart it-
self” trying to figure out subtle patterns that may be
unreliable predictors for some programs.

It is particularly interesting to study LRU’s behav-
ior for looping patterns of memory references, for sev-
eral reasons:

e Loops are a very common control structure, and
often dominate programs’ overall pattern of ref-
erences.

Loop-like patterns of referencing may arise even
when no loop is explicitly programmed, e.g., in
coroutine-like uses of bounded buffers, in memory
allocators, etc.

Loops particularly relevant to LRU’s

strengths and weaknesses.

are

The worst case for LRU: A too-large loop.
LRU’s technique for predicting which pages will be
touched soon is quite simple: the time since the last
touch to a block is used as a predictor of the time until
the next touch.

The bad cases for LRU’s predictive strategy are
when the time until the next touch to a block is neg-
atively correlated with the time since the last touch,
such that it systematically evicts blocks that will be
referenced soon, in preference to blocks that won’t be.

It is easy to construct a worst case for LRU and a
memory of size m. Simply loop through m+1 blocks of
memory, touching each block once before returning to
touch any block a second time. (For example, looping
through an array of block-sized data objects, reading
one value out of each. It doesn’t matter whether the
items are stored linearly in an array, however.) Aslong
as more blocks than will fit in memory are touched
between touches to any given block, LRU will fault on
every memory reference, and always evict each block
just before it is touched again—touching a cache-full
of other blocks will always evict every blocks that has
not been touched in the meantime.

18

Notice that for this worst case, it doesn’t matter if
LRU has m pages at its disposal, or just one, or any-
thing in between. With one page, exactly the same
thing will happen, so the other m — 1 are wasted
caching the wrong blocks. It doesn’t matter whether
blocks are evicted shortly before the next touch, or a
long time before it—either way, a miss will occur when
it 1s touched.

This may seem like a fatal flaw in LRU, since sim-
ple loops are quite common in real programs, and in
fact we do believe this is significant. However, most
loops do not touch this extremely awkward number
of blocks. For any given size of memory, most loops
touch either considerably fewer or considerably more
blocks than the memory will hold. In the case of
“small” loops, where the looped-over data fit in mem-
ory, LRU has no problem. All of the blocks will be
faulted into memory once at the first iteration, and
remain there for any number of iterations of the loop.
For loops over very large amounts of data—much more
than fast memory will hold, any replacement policy
will do fairly poorly, even an optimal one.

LRU is competitive with optimal replacement.
(Sort of.) The case of “large” loops is clearly bad,
but it is significant that for very large loops (much
larger than the memory size) any replacement policy
will do poorly. Consider a memory of size m, and a
loop over 2m blocks. Even an optimal replacement
policy will fault on all of the blocks during the first
iteration, and it will fault on half of them at each it-
eration thereafter. An optimal policy will essentially
pick m — 1 blocks to keep in cache from one iteration
to the next, and use one block to cache each of the rest
briefly when it is touched. In essence, it will victimize
half of the blocks at each iteration, evicting them im-
mediately after use, for the benefit of the other half,
which 1t can then keep in memory indefinitely.

Because of this, LRU is said to be competitive with
optimal replacement within constant factors of space
and time. In general, if we give LRU a constant factor
of extra space, we can ensure that its fault rate is also
within a constant factor of optimal. For the example
above, if we give LRU a factor of 2 in memory, it
will not fault at all because the whole loop will fit in
memory. More generally, we can always “fix” LRU
by giving it somewhat more memory, because the bad
cases for LRU in a larger memory are also rather bad
cases for optimal replacement in a somewhat smaller
memory.

This is reassuring to system designers—LRU may
not be perfect, but reasonably good performance (rela-
tive to any possible replacement policy) can always be
achieved by spending a “small” constant factor more
on memory.

On the other hand, this technical notion of (space-
time) competitiveness is small consolation to a user
of an actual computer with a particular memory size,
when a program loops over more data than will fit
in memory. The competitive argument requires a
constant factor in space to achieve a time bound.
For a given memory size, it provides no useful bound
on how badly LRU may work compared to optimal
replacement—LRU may have a 100% miss rate in sit-
uations where optimal would simply fault most of the
data in once and only fault occasionally thereafter.

(Practically speaking, this may have very serious
consequences for the cost of computers. Since LRU’s
performance may sometimes collapse in the face of a
small increase in working set size, it encourages com-
puter owners to simply buy more RAM until their
worst-behaved program stops “thrashing.” A common
maxim is that “if it pages, it’s broken.” This is essen-
tially a cost-maximizing phenomenon—the machine
must be able to handle the worst of the programs that
are run on it with any expectation of reasonable per-
formance. The machine is loaded with enough RAM
for the worst case, because its performance cannot be
relied on to degrade gracefully.)

This raises the question of how often programs do
loop over more data than will fit in memory, and
how important those loops are in the overall memory-
referencing behavior of a program. Little is known
about this.

LRU and multiple looping phases. Most pro-
grams’ behavior is not dominated by a single loop.
Even programs whose behavior consists primarily of
loops often do not have a single simple loop that dom-
inates their performance. They may have a variety
of phases which are dominated by a simple loop each,
but with different-sized loops for each phase. Some of
the phases may fit comfortably in memory and cause
no problems. Other phases may loop over far more
blocks than will fit in memory, and be problematic for
any replacement policy, still others are “just right,” of
an in-between size where another policy might work
much better.

As in the case of a mix of whole programs consist-
ing of a single loop each, a single program with a mix

19

of loops of varying sizes may interact well with LRU
most of the time, and average performance may be
acceptable. Whether this is true often depends on
whether any loop is larger than main memory, and it-
erates many times, causing a collapse of virtual mem-
ory performance. (The same phenomenon can hap-
pen at the level of cache memory for smaller loops, of
course, and slow a program down by a factor of sev-
eral times. If 1t happens at the size relevant to virtual
memory however, the extremely long access times of
magnetic disks are likely to cause a much more dra-
matic performance degradation—perhaps slowing the
program by a factor of 100 or 1000, or even more.)

Spatial locality often helps in bad cases. Even
within a single program or phase dominated by a too-
large loop, several other factors may come into play,
making LRU’s performance very bad but not nearly
the worst case. Spatial locality may help, and nested
loops may introduce many memory references that
LRU handles nicely.

Spatial locality is often helpful, because a loop over
a large number of words may touch a much smaller
number of blocks. In the case of an array stored con-
tiguously in virtual memory, accesses to successive el-
ements of an array are usually accesses to the same
page. If a page holds 1024 consecutive items of an ar-
ray that is accessed sequentially, this may reduce the
miss rate by three orders of magnitude. In effect, LRU
wastes all but one of the block frames, but that one
frame (the most recently used one at any given time,
not actually a particular frame) does an excellent job
of exploiting spatial locality.

Because LRU systematically fails to exploit tem-
poral locality for too-large loops, the miss rate may
still be very high—recall that a reasonable miss rate
is roughly one in a million—and the program may
spend orders of magnitude more time paging than do-
ing “real” computation. In some cases, this may be
acceptable; if an infrequently-run program takes hours
or days to run instead of seconds or minutes, it may
not matter much if the results aren’t needed until next
week. In other cases, where the program in question
must run at a reasonable speed, the only solution is
to buy more memory to get acceptable performance.

LRU and nested loops. LRU may do reasonably
well for nested loops, where the outer loop iterates
slowly and the inner ones iterate more quickly. (Here,
it’s important that the inner loops iterate over the

same data repeatedly—if they iterate over different
data, the locality will be much worse.) The blocks
touched during the iterations of the inner loops may
stay in fast memory between iterations, because they
are touched much more often that the blocks touched
only by the outer (too-large) loop(s).

In many cases, the inner loops do most of the work
and generate far more memory references than the
outer loops. In such cases, LRU may work well, but
generally performance is still limited by the rate at
which the outer loop(s) touch blocks that have been
untouched for too long.

Notice that LRU generally does the right thing for
short-term patterns in memory references—if pages
are touched repeatedly over the short term, they are
not evicted from memory. This is its great strength.
The mistakes it makes are mostly with longer term
patterns, e.g., loops bigger than the memory size.

All other things being equal, this is a good gen-
eral strategy. If given a choice between systematically
making mistakes with respect to long-term patterns or
with respect to short-term patterns (and either kind of
mistake is equally expensive) then it’s generally bet-
ter to make mistakes on the long-term patterns. [ac-
tually need to discuss skew to make this ar-
gument; we happen to *know* that on aver-
age, shorter-term patterns are more common.|
Because long-term patterns don’t recur as frequently,
consistently making mistakes over the short term
is more expensive—short-term events simply happen
more often. As we will see in discussing frequency-
based replacement, neglecting this principle can lead
to catastrophic performance collapse.

2.6.3 LRU and other kinds of referencing be-
havior

[stack-like (mostly LIFO), hot-cold, etc.]

[LRU works well for working sets that fit
in cache. Works poorly for working sets
that don’t quite fit, if referencing patterns are
mostly queue-like, but works as well as can be
done for LIFO patterns.]

2.6.4 Frequency-based Replacement

An early competitor of LRU was frequency-based re-
placement. The basic idea of frequency-based replace-
ment is to keep track of how often different pages are
touched, and evict those that are touched least often.
The basic 1dea is that the most important pages are

20

the ones that are touched most often, so they should
be kept in the cache in preference to pages that are
touched less often.

The simplest frequency-based replacement policy is
Least Frequently Used, or LFU. An LFU policy keeps
a counter for each block in the cache, indicating how
many times it has been touched. When a block must
be evicted, the on that has been touched the least is
chosen.

This seemingly reasonable idea has wide and per-
sistent appeal, but is actually deeply flawed, and
frequency-based replacement has performed poorly
and erratically in a variety of experiments. Because
of this, it 1s not in general use. We will explore its
behavior in some depth, however, for two reasons:

e [t demonstrates important issues. While LFU
works poorly, and this is well known, it 1s easy
to introduce problems like LFU’s when designing
adaptive algorithms; it clearly demonstrates cer-
tain characteristics that replacement policy de-
signers must avoid.

e Similar issues arise in other guises. While LFU
is not a popular replacement policy, its problems
resurface in other contexts, particularly clustering
and prefetching policies. We believe that much
work on clustering has been misguided, because
researchers in clustering have not understood the
general kind of problem that LFU demonstrates.
Many clustering policies have problems similar to
LFU’s, which could be avoided. (This will be

discussed in a later section.)

Recall that earlier we said that an optimal policy
retains the blocks that will be needed soon, and evicts
the blocks that won’t be. From the replacement pol-
icy’s point of view, all that matters to any particular
replacement decision is how soon each block will be
needed—the decision of how long to keep it in mem-
ory beyond that is not urgent, because it can be made
later, independently of whether the block 1s evicted
and faulted in again in the meantime.

The next touch to each block is the one that matters,
because at that point the replacement policy has no
choice but to ensure that it is in memory. If the block
will only touched once, it must be in memory, just as
surely as if it will be touched a million times.

This is not to say that the pattern of past
touches can’t be used to predict the pattern of future
touches—far from it. At any given time, however,

that pattern is only informative if it can be used to
predict the time until the next touch. In this light,
keeping a count of the number of touches to each page
seems much less appealing—it only makes sense if the
number of past touches to a page is very strongly cor-
related with the ime until the next single touch—and
unfortunately, as experiments have shown, it 1sn’t.

LFU works well for some programs, but often ex-
hibits extremely poor performance, for at least two
important reasons:

e It doesn’t distinguish between important and
unimportant references in a timescale-relative
way.

e It doesn’t adapt quickly to changing patterns of
reference.

LFU and complex (multi-frequency) patterns.
Consider a program that touches block 4 a hundred
times as often as block B. If the touches to these pages
are distributed evenly, either regularly or randomly,
LFU will work quite well. The touch count for block
A will quickly rise well above the count for block B,
and whenever there’s a choice between them, block
B will be evicted. On average, that will be the right
decision because block A is more likely to be touched
next.

On the other hand, it is common that the touches
to blocks are mnot distributed evenly. Suppose that
block A is touched 1000 times in quick succession ev-
ery 10,000 time units, and block B is touched once
every 1,000 time units. In that case, the bursts of
1000 touches to block A have very different implica-
tions than the spacing between those bursts. During
a burst, the time until the next touch is very short,
but between the bursts, it is very long. Ideally, the
replacement policy should notice the difference, and
never evict block A during a burst of closely-spaced
touches. At any other time, though, it should prefer
to previct block A rather than B, because when block
A is idle, it’s idle for a very long time.

This is a very severe problem for LFU. Notice that
in this case, the count for page A stays very high rela-
tive to the count for page B, and LFU will always pre-
fer to evict B, when usually it should evict A. It may
therefore make the same mistake many, many times, if
touches to other pages force many evictions. It will be
battered by extra faults due to this mistake, and never
notice that fact and adapt to avoid it. Because LFU
is very prone to making serious and repeated mistakes,

21

its performance is hard to analyze, but it is generally
considerably worse than LRU and often dramatically
worse. (It is not competitive with optimal.)

LFU and large-scale phase behavior. LFU is
also prone to making serious and repeated mistakes
due to its inability to adapt quickly to programs’ phase
behavior.

For example, suppose some set of blocks is touched
very often during the intitialization phase of a pro-
gram, but not at all thereafter. Those blocks’ touch
counts will go up rapidly for a while, and then sta-
bilize and never come down again. If blocks touched
during later phases are never touched as many times,
the blocks used during intitialization will be effectively
“pinned” in memory, wasting space that could be used
to cache the blocks relevant to the later phases. The
blocks used later in the program may be repeatedly
evicted and faulted on, because the blocks used dur-
ing an earlier phase were touched so many times that
they are difficult to displace.

Attempts to fix LFU. Many attempts have been
made to salvage frequency-based replacement. Most
of them involve variants of one or both of these two
techniques:

e [iltering out very short-term information. Here
the idea is that high-frequency information is mis-
leading, so that repeated touches over very short
intervals should be ignored or given less weight
than touches over longer intervals.

e Decreasing the weight given to older information.
Here the idea is that simple LFU gives too much
weight to information about access patterns far
in the past. By weighting recent information
more heavily, frequency-based replacement can be
made to adapt more quickly. Blocks that were
touched many times far in the past do not stay
“pinned” in memory at the expense of currently-
active blocks.

While each of these techniques is a step in the right
direction, we believe that frequency-based replace-
ment is fundamentally misguided—these amendments
succeed almost precisely to the degree that the result-
ing policy stops being frequency-based in the classic
sense, and starts being guided by a fundamentally dif-
ferent principle.

The deep problem with frequency-based replace-
ment is that its prediction function predicts the wrong
thing. As the earlier discussion of optimal replace-
ment shows, a prediction function’s job is to predict
the time until the next touch, not the number of times
that pattern will recur. Basing time predictions on
the number of times something has happened in the
past is simply a mistake, except to the degree that it
enhances the reliability of the time prediction.

We believe that a more direct approach 1is
appropriate—rather than simply counting individual
events, it is crucial to detect the relevant patterns in
events. The number of recurrences of the pattern is
interesting only in that it bears on the reliability of
the prediction.

2.6.5 FIFO

One of the simplest replacement policies is FIFO, or
“first-in, first-out” replacement. At a fault, FIFO al-
ways evicts the block that has been in the cache for
the longest time. This simple policy works rather well,
on average—it’s miss rate is only about a third higher
than LRU’s. [check this number—it might be
20%, or 40%; I don’t recall]

FIFO works reasonably well because most touches
are to recently-touched blocks; FIFO ensures that a
block that has been faulted into the cache on will stay
in cache for a considerable period—until after the evic-
tion of all the blocks that had been there when it was
brought in.

Eventually, however, the block will be evicted, even
if it has been touched recently—FIFO only notices the
first touch to a block after it 1s evicted, and ignores
all touches to the block while it is in cache. (A block
that 1s touched once will therefore stay in cache just
as long as a block that is touched frequently for the
entire time it is cache resident.)

This weakness is not as severe as it may seem—
a block remains in cache long enough to avoid most
misses due to short-term repeated touches. Once it is
evicted, it may be faulted on again (once) and then
remain in cache for a considerable time. A block that
stays active for a very long period will therefore be
evicted and faulted on repeatedly, but only occasion-
ally.

FIFO shares most of LRU’s strength with respect
to simple loops over data that will fit in cache—and
its weakness if the data won’t quite fit. For a simple
loop that fits, FIFO will fault all of the blocks in, and

22

then faulting will stop and the blocks will stay cache-
resident and cause no more misses.

For a simple loop that does not fit, FIFO will evict
the page that has been in memory the longest, which
is the one which will be touched again soonest, guar-
anteeing a high miss rate.

FIFO and LRU make the same mistake for simple
too-large loops because for such patterns there is lit-
tle difference between the time of the first touch to a
cache-resident block (which FIFO uses) and the time
of the most recent touch (which LRU uses)—the block
1s touched only briefly at each iteration of the loop.

2.6.6 Random

Another simple replacement policy is random replace-
ment; when a block must be evicted, it 1s chosen by
some pseudo-random procedure from among all blocks
in the cache.

Surprisingly, Random works reasonably well—like
FIFO, its miss rate is typically only about a third
higher than LRU’s. [get actual number... what is
it?] It is interesting to examine why this is true.

First, consider the fact that most in-cache blocks
will either be touched soon, or not for a relatively long
time—the distribution of times until next touches is
very heavily skewed.

When a random policy evicts a block, it is fairly
likely that the block will not be touched soon. [if
we assume some skew in the distribution of
touches to blocks, that is... on average, it’ll
be one of the less-touched blocks or medium-
touched blocks, not a hot block. | In that case,
the vacated frame can be used for a considerable time
before the block is faulted on again.

Sometimes, however, random evicts a block which
will be touched soon. In that case, the block is evicted
but then quickly faulted back into memory. Once it
has been faulted back into memory, it is unlikely to be
evicted again soon—the randomness of eviction proba-
bilistically guarantees that many other pages will usu-
ally be evicted first.

Random eviction is therefore probabilistically com-
petitive with LRU for working sets that are have very
skewed reference patterns. [Is this what I mean to
say? Has this been said somewhere? Is there
a proof? | For working sets that fit in the cache, it
will try evicting pages until it evicts one that is not
active; on average this takes very few tries. Once the
inactive data have been faulted out, the working set
is cache resident and faulting stops.

For working sets that do not fit in the cache or do
not have a heavily skew, the situation is more complex.
If the working set fits in RAM but accesses to those
blocks are fairly evenly distributed, Random may evict
many frequently-touched blocks, only to fault them in
again and try again, repeatedly.

On the other hand, Random does not share LRU’s
(and FIFO’s) severe problem with loops that are some-
what too large to fit in the cache. By evicting pages at
random—rather than the blocks that will be touched
soonest due to the looping pattern—it ensures that a
significant number of looped-over blocks can remain in
the cache. Its tendency to evict some recently-touched
blocks comes in handy, allowing other blocks to stay
in the cache until they are touched again.

2.6.7 Loop-detecting

The very first virtual memory system—for the Manch-
ester University ATLAS, later marketed by Ferranti—
used an interesting loop detecting replacement policy
[Fot]. The idea behind this policy is that loops form
an important component of the referencing patterns of
many programs, and that loops can be treated prop-
erly by keying off of periodic touches to pages. Un-
fortunately, this policy did not work well, and was
supplanted by an LRU-like policy. Still, the idea itself
is quite interesting and a variant of it may work quite
well.

We do not have detailed description of this algo-
rithm, but it appears to have worked roughly as fol-
lows: for each block, a record is kept of the time
between previous touches, perhaps the last two de-
tectable touches, as well as the time of the last touch.®

If accesses are periodic, the time until the next touch
to a block can be predicted by assuming that the in-
terval between the last touch and the next one will
be the same as the time between the last touch and
the one before that. The difference between the times
of the two previous touches can be added to the time
until the next touch to predict the time of the next
touch.

It is interesting to consider the difference between
this kind of prediction and the predictions made by
LRU. Consider the following pattern of touches to a
page, where t denotes the time at which a replacement
decision must be made:

81t is unclear to us what mechanism detected this, or whether
it could detect all touches to a block. It is also unclear whether
it recorded only the last two touches, or some more complex
information.

23

* * *
time: -29 -19 -9 t

Note that LRU will predict that the time until the
next touch is relatively long—the same as the time
since the last touch: it’s view of the past is simply
“reflected” around the present () to give an estimate
of the future. Since the block was last touched at time
t — 9, LRU predicts it will be touched again at time
t+9.

The ATLAS policy, on the other hand, will predict
that the block will be touched again much sooner—it
recognizes the interval between touches (10 units) and
sees that another interval is “almost up,” so another
touch to the page is due soon, at time ¢ + 1.

This seems like a good principle,; all other things
being equal, but there are several subtleties.

In a replacement policy, some pages are evicted so
that other pages can be kept in the cache; therefore,
some pages must be evicted early, relative to what
LRU would do, so that others can be retained longer
because touches to them are expected soon.

The ATLAS policy used its predictions to evict
pages early by noticing when a loop had stopped. That
18, it noticed when its expectation that a page would
be touched again was violated—if it expected a touch
to a page at (roughly) a particular time, it was as-
sumed that the loop operating on that page had ter-
minated and that the page would not be touched again
soon.

Unfortunately, memory referencing behavior often
consists of more than simple loops, and this heuristic
can easily be foiled. Consider a simple case of nested
loops:

*kk *kk *kk

time: t

In this case, the inner loop has stopped by time ¢,
but the outer loop (responsible for the repetition of the
inner-loop touches) may not have. If the time between
the last two touches is used to predict the next two
touches, it appears that “the loop has stopped” and
the page is no longer active. If the outer loop has not
stopped, however, it is very likely that the block will
be touched again soon—when the next iteration of the
outer loop returns to it.

The problem with the ATLAS replacement policy
is that it is not properly timescale relative. The rele-
vant periodicity here is the not the periodicity of the

inner loop, but the periodicity of the outer loop. Very
short-duration periodicities do not matter much; the
structure of the bursts of touches due to the inner
loops 1s not particularly important. What is crucial is
the pattern of touches at a timescale large enough to
be important to replacement decisions.

We have oversimplified somewhat here, in that we
have assumed that memory is large enough that it may
be reasonable to hold this block in memory between
the iterations of the outer loop. If the iteration in-
terval is too large, however, it may be better to evict
the page early—the space reclaimed can be used for
caching something that will be touched again sooner.
In that case, it is better to pay the cost of faulting
the block in again later, to avoid more faults in the
meantime.

This example illustrates [...blah blah ...timescale
relativity... not too big, not too small, just
right...]

2.6.8 Gap-based replacement
[discuss [Quo94], Phalke, WWOS-IV paper]

2.6.9 OPT or MIN

2.7 Methodological Issues in Replace-
ment Policies

2.8 Toward a Theory of Replacement

2.8.1 Block Histories and Adaptation

2.8.2 Phase Behavior, Aggregate Locality
Properties, and Adaptation

3 Prefetching

While many memory hierarchies rely exclusively on
demand faulting—waiting until blocks are touched to
transfer them to fast memory—some use prefetching,
initiating the transfer of some blocks ahead of time.

The most common general-purpose prefetching
strategy is sequential (address-order) prefetching;
when a block is faulted on, the following block in ad-
dress order is also requested. For example, if block
number 316 is faulted on, block number 317 1s fetched
as well. More than one block may be requested, per-
haps the next two or three blocks.

More generally, a prefetching policy incorporates a
prefetch prediction function, keyed to some aspect of
program behavior, and issues requests for blocks based

24

on that prediction. Like a replacement policy, the
prefetching policy keys off of observable behavior of
the program (such as touches to blocks, or faults on
non-resident blocks) and uses that behavior to predict
future behavior—touches to nonresident blocks that
may happen soon.

3.1 Prefetching vs. Large Blocks and

Clustering

An alternative to prefetching is to cluster (group)
blocks or language-level data objects together in
slower memory, so that they can all be fetched quickly
by a simple “non-prefetching” policy, perhaps using
larger blocks. The idea here is to get the effect of
prefetching using a simple demand fetch policy, by ar-
ranging data near each other in memory and fetching
larger units. That is, grouping related data together
can improve spatial locality, to get much of the ben-
efit of prefetching using a standard demand-fetching
policy.

Looked at another way, the normal use of large
blocks can be seen as a kind of crude prefetching—
after all, “extra” data are fetched when something is
faulted on, in the hope that it will also be useful soon.

(Because of this, interpretation of experimental re-
sults is not as easy as it might seem, as will be ex-
plained later.)

Clustering will be discussed later, in Section 4.

3.2 Programmer-directed vs. Compi-
ler-directed vs. Dynamically-pre-
dicted Automatic Prefetching

In this paper, we focus on prefetch schemes which pre-
dict future access patterns dynamically based on past
access patterns. Other approaches are possible, how-
ever, using information about programs from other
sources. Programmers may supply directives saying
when to prefetch data, based on knowledge of the al-
gorithms used in the program. In some cases, compil-
ers may be able to infer this information, and generate
code that issues prefetches, rather than relying on the
memory hierarchy itself to make the predictions.

Each of these approaches has merit, but each is se-
riously limited, as well.

3.2.1 Explicit Directives

In general, programmers are not good at knowing
what to prefetch, because few programmers under-

stand issues in locality of reference sufficiently well.

Programmers are likely to make mistakes, and make
performance worse, rather than better, if they are not
knowledgeable and careful.

[blah blah... need to give programmers a
reasonable model, so they can say what they
know and let the prefetcher evaluate it and de-
cide what to do, rather than having them sim-
ply say what to fetch: similar to overlays-vs-
VM; the runtime system has information that
the programmer doesn’t, e.g. memory size, so
the programmer shouldn’t overcommit at pro-
gramming time.]

3.2.2 Compiler-directed Prefetching

[compiler-directed prefetching works best ei-
ther for very short-term access patterns—up
to about a hundred instruction cycles ahead—
or for extremely regular patterns, like blocked
arrays. Doesn’t work well for anything that
can’t be determined statically by relatively lo-
cal analyses of the source program... compilers
just aren’t good at the “big picture,” but run-
time systems can be... mix of both is likely
to be best... fwd. ref striping and blocking in
clustering section.]

3.2.3 Dynamic Prediction

[why dynamic prediction is necessary... regu-
larities in data that aren’t known at compile
time, nonlocal properties that are difficult for
compilers to infer, etc. |

3.3 Block size and Fetch Policy

When considering the use of prefetching, it is im-
portant to keep in mind that normal demand fetch-
ing using moderate block sizes already shares impor-
tant characteristics with prefetching—some data are
fetched “speculatively,” because they are near the de-
manded data. A prefetching policy therefore can have
three different kinds of effects:

e increasing the feich size, by fetching more blocks
at a time,

e increasing flexibility wn fetch size, by allowing
more blocks to be fetched at some times, but not
at others,

e increasing flexibility of what s fetched, and

e increasing flexibility of eviction, by allowing pre-
fetched blocks to be evicted independently of
faulted-on blocks.

3.3.1 Effects of Increasing the Fetch Size

When comparing prefetching and demand fetching
policies, 1t is therefore important to separate out these
effects. If a demand-fetching policy and a prefetching
policy are compared using the same block size, the re-
sults may misleadingly favor one or the other simply
because a given program may work best with a par-
ticular fetch size.

Consider a program with fairly good spatial local-
ity, such that for a particular memory size of interest,
say 4 MB, the optimal fetch size is 8KB. If we just
compare a simple one-block-lookahead policy and de-
mand paging, using 4 KB virtual memory pages in
both cases, the prefetching policy will naturally look
better: it exploits spatial locality and can fetch the
same amount of data with half as many seeks.

What this seemingly head-to-head comparison does
not tell us is whether the benefit is due to the dif-
ferences between demand fetching and prefetching, or
just due to a larger fetch size. It is not unlikely that
nearly all of the benefit from prefetching would also
result from using demand fetching with pages that are
a larger size, say 8 KB.

To really be able to compare these two policies, we
must at least compare prefetching using 4 KB pages to
demand fetching using both 4 KB and 8 KB pages. A
one-block-lookahead policy may sometimes fetch one
page, and sometimes two, so we should bracket its
average fetch size in comparing it to a demand fetch
policy. If prefetching does not work better in both
cases, the apparent advantage of prefetching in one
case may not be robust. It may simply be due to the
fact that the tested program has higher spatial locality
than the block size can fully exploit, and can benefit
from an increase in fetch size in either way.

In trying to evaluate prefetching policies in a gen-
eral way—as opposed to making assumptions about
the block size—it 1s therefore necessary to find a fair
baseline. One good baseline is the performance of
demand fetching with thedemand-fetch-optimal block
size.” For each test program and each particular mem-
ory size used, the page size should be adjusted to min-

9We invented this term for this paper. [pointers to prior
statements of this concept would be appreciated]

25

imize total (latency + transfer) costs for the demand
fetching scheme.

Then the prefetching policy should be used with two
or more block sizes that bracket this size; if it works
better than demand fetching with the same block size,
that means that the prefetch policy does not unduly
increase transfer costs when it increases the fetch size.

If prefetching works better in both cases, then we
can conclude that prefetching has definite advantages
over demand fetching, above and beyond simply in-
creasing the fetch size.

Even if a particular prefetching policy does not
robustly improve performance over a range of block
sizes, caution should be exercised in interpreting this
“negative” result. There are many possible variations
in prefetching policies, and a simple negative result
does not necessarily mean that “prefetching doesn’t
work.” It means that further study is required, to
determine why the tested policy doesn’t work, and
whether the problem can is fundamental, or can eas-

ily be fixed.

3.3.2 Effects of Flexibility in Fetch Size

One advantage of prefetching i1s that in principle it
should be possible to adjust the fetch size dynami-
cally, by fetching more or fewer pages at a time, to
adapt to particular workloads’ spatial locality charac-
teristics. Prefetching may therefore be able to make a
memory hierarchy’s performance more robust, by ad-
justing the fetch size to a particular workload—rather
than just picking a fetch size expected to work well
“on average.” (This adaptation might be dynamic,
during a program run, or it might be based on entire
executions of a program, or it might be based on the
overall job mix a computer faces.)

This is a very complex and poorly understood topic,
however, and most prefetching policies don’t seem to
make any (intentional) attempt to do this.

To properly evaluate this effect, it is necessary to
find a “representative” set of programs—which is a
very difficult subject—and find a set of “reasonable”
block sizes, such as the demand-fetch optimal block
size for the entire test suite. If, on average, prefetch-
ing works better than demand fetching for fixed block
sizes and a range of programs, it demonstrates the
benefits of prefetching per se.

26

3.3.3 Increasing Flexibility of What is

Fetched.

One advantage of some prefetching schemes is that
they may fetch different data than would be fetched
simply by having a large block size.

[blah blah... often harder

looks...

than it
sequential prefetching is usually
cheaper than random access prefetching—
especially for disks, but also for silicon memo-
ries to a lesser degree because of the way mem-
ory units work—fetching blocks in same row of
the 2D memory array is faster than fetching
blocks in a different row, because an enire row
is usually latched and can be read from with-
out reading the row from the main array again.

]

3.3.4 Increasing Flexibility of Eviction

A related advantage of prefetching may be to allow
prefetched data to be evicted independently of data
that are actually touched. For example, consider a
demand-fetching memory that fetches 8KB blocks,
and a sequential prefetching memory that fetches 4KB
blocks using one-block lookahead. These policies are
comparable in terms of what they fetch, but may treat
data very differently after they are fetched. Suppose,
for example, that only one half of each 8KB page is
actually touched. In that case, the demand-fetching
memory must cache 8KB blocks, even if half of the
block is never touched.

In contrast, the prefetching memory can evict the
4KB prefetched block that goes untouched, while
keeping the 4KB block that was actually touched in
memory.

Cutting losses due to bad prefetches. A simple
example i1s when the demand-fetched block is touched
repeatedly over a long period of time, and the pre-
fetched block is never touched at all. Eventually, the
prefetched block will be evicted, and the demand-
fetched block can stay in the cache indefinitely, as
long as 1t keeps being touched often enough. Thus a
prefetching memory has the ability to “cut its losses”
in the face of mistakes by its prefetch predictor.

This raises an interesting and poorly understood
question of how long prefetched blocks should be kept
in memory in hopes that they will be touched soon.
Perhaps prefetched blocks that aren’t touched wvery
soon after they are fetched should be evicted, to avoid

polluting the cache. But then, perhaps not—it may
be that a prefetch which doesn’t pay off immediately
is still likely to be good, because it will be touched
soon enough. Perhaps unsurprisingly, the question
of whether a block will be touched “soon enough” is
timescale-relative. If the cache is very small, a pre-
fetch may have to pay off very soon to pay off at all,
because the memory occupied by the prefetched block
could be put to better use. If the cache is large, it
is not too expensive to keep the block around for a
longer while.

The prefetch time-to-payoff distribution is relevant
to this question. If it is very heavily skewed toward
short payoff intervals, then it 1s worthwhile to evict
prefetched blocks fairly quickly if they aren’t touched.
For example, it may be that prefetches usually pay
off very soon or not at all. In that case, evicting pre-
fetched blocks if they go untouched for a short period
will cut losses without reducing prefetch performance
by much. The successful prefetches will still be suc-
cessful, and the unsuccessful ones won’t waste much
cache space.

If the time-to-payoff distribution is less heavily
skewed, it may be worthwhile to keep blocks in mem-
ory for a longer time if the memory is large, but a
shorter time if the memory is small.

(If the distribution is not significantly skewed,
prefetching may simply not be worthwhile; prefetched
blocks are likely to either be evicted before actually
being touched, in which case the prefetch did no good
and some harm, or the prefetched blocks may be
touched while in memory, but only after they have in-
directly caused more misses by occupying blocks that
could have been put to better use in the meantime.)

Unfortunately, little is known about skew in the
time-to-payoff distribution; this issue has not gener-
ally been studied directly. Most studies simply present
bottom-line performance results for entire policies,
without separating out the reasons for their success
or failure.

Independent eviction. Prefetching may be advan-
tageous relative to fetching larger blocks even when
both blocks are touched, so that the prefetch is suc-
cessful, but one block remains active longer than an-
other. If we simply used demand fetching with blocks
twice as large, the resulting large block would be a
large unit that must be either kept resident or evicted.
With prefetching, it is possible to evict either block in-
dependently of the other, if it does not keep getting

27

touched over as long a period.

3.3.5 Fetch Size vs. Overall Memory Size,
and Timescale Relativity

[This section is now somewhat redundant...
should it be moved up, or should part of the
stuff in the previous section be moved after
this?]

Another consideration in choosing a fetch size 1s the
total size of the memory. For small memories, small
blocks may be especially desirable, because a small
memory size effectively reduces spatial locality.

Recall that spatial locality is really a spatio-
temporal phenomenon—fetching a larger amount of
data at a miss is good if the “extra” data will be
touched “soon.” But how soon is soon? That is, when
does it pay off to fetch extra data, and when is it bet-
ter not to, and fetch the data (in smaller blocks) as
needed?

The answer to this depends on three things:

e how soon the extra data will be touched (if at

all), and

e whether the memory it will occupy could be put
to better use in the meantime,

e whether sufficient bandwidth is available to sat-
isfy the prefetch requests without saturating the
communications channel (bus or disk adapter).

In the case of a small cache, space is typically
quite precious—only a small amount of very-recently-
accessed data can be held in the cache, and items typ-
ically don’t stay in the cache very long. Bringing any-
thing into the cache requires evicting something else
that is very likely to be accessed fairly soon. In gen-
eral, bringing the extra data into the cache will pay off
only if that extra data is touched sooner than whatever
data it replaces in the cache.

For a large cache, this problem is less severe. An
item that is evicted usually hasn’t been touched for a
long time, and is unlikely to be touched again soon;
evicting it to make room for extra data brought in by a
fetch is rather less dangerous. (If the extra data still go
untouched while they are in the cache, however, they
will of course tend to pollute the cache and increase
the miss rate.)

Notice that whether the data go untouched is
timescale-relative. For a large cache that holds blocks
for a very long time, the extra data may go untouched

for a considerable period, but then be touched while
in the cache, saving a miss. For a smaller cache, the
same data may already be evicted by the time they
are touched, causing misses—after uselessly wasting
space in the cache, and likely causing misses on other
items that could have been successfully cached.

Luckily, such considerations are usually only criti-
cal for very small memories, which have relatively few
block frames. Most modern memory hierarchies have
several hundred or even several thousand block frames
at each level, so the choice of block size is more de-
pendent on transfer and latency times and the cost of
maintaining address translation mappings. (This may
not be true for small first-level caches, or for very small
caches used in the implementation of CPU’s, such as
translation lookaside buffers, etc.)

3.4 Overlap and Bandwidth Limita-
tions

Two important factors can decrease the effectiveness
of prefetching. One 1s a lack of overlap between fetch-
ing data and normal program execution—if a block
is not requested far enough ahead of time, the pro-
gram may demand the block before it is available,
and have to wait for it despite the fact that it was
prefetched. Another is a lack of bandwidth; if fetches
(including prefetches) occur too closely together, there
may not be enough communication bandwidth be-
tween fast and slow memory, and the limiting factor
of performance will be the rate at which the data can
be transferred.

3.4.1 Overlap

For a prefetch to be effective, the prefetch must occur
far enough in advance of the program’s actual access
to the requested block. If a prefetch is initiated, but
the program immediately attempts to access the data,
the program must wait for the block almost as long as
if it had simply faulted on the block.

The overlap ratio is the fraction of the fetch
time that 1is successfully overlapped with other
computation—the program’s execution of instructions
that operate on registers or data in the cache, before
actually attempting to access the prefetched data.

The overlap ratio depends on features of the actual
memory hierarchy in question, particularly the latency
of misses. It is therefore a measure of the potential
effectiveness of prefetching for a memory system with
particular parameters. If the latencies are very high,

28

the overlap ratio is likely to be low—a smaller fraction
of the latency can be masked by prefetching ahead of
time. (This will be discussed in detail below.)

A more general measure of the performance
of a prefetch policy is the prefetch time-to-payoff
distribution.’® This is the distribution of times be-
tween the initiation of prefetches and actual touches
to prefetched blocks; it just says how many prefetch
predictions occur how far in advance of actual touches
to the predicted blocks. This distribution can be inter-
preted relative to systems with different miss latencies.

For example, if a prefetch prediction occurs 20 in-
struction cycles in advance, and we assume that a pre-
fetch is immediately initiated, then it may be an en-
tirely successful prefetch if the miss latency is less than
20 instruction cycles—or a partly effective prediction
if the prefetch i1s 40 instruction cycles, in which case
we may be able to reduce the cost of a miss to 20
instruction cycles by prefetching 20 cycles in advance.

Notice, however, that the prefetch time-to-payoff
distribution is not generally independent of the mem-
ory size or block size, because whether a prefetch is
issued at all generally depends on whether a block is
memory resident. (For a small memory, it may not
be resident, and a prefetch may be issued; for a large
memory, it may be resident and no prefetch is neces-
sary.)

The prefetch time-to-payoff distribution is enlight-
ening in two ways. The first is obviously that it tells,
for any given miss latency, how much latency cost
may be masked by prefetching. The second is that
it tells how long memory may be occupied by pre-
fetched pages waiting to be touched. If prefetched
pages are touched before they are evicted, they may
be “successful,” but if they go untouched for a long
time, they may also incur a cost by tying up memory,
in effect polluting the cache.

All other things being equal, the best prefetch pre-
dictor would prefetch just far enough in advance to
mask the maximum amount of latency cost, but not
so far in advance that prefetched pages unnecessar-
ily tie up cache space that could be put to better
use. The ideal prefetch time-to-payoft distribution is
modal, with a mode at a point just beyond the actual
miss latency. Blocks will be fetched “just in time” to
get the maximum benefit in avoiding stalls by overlap-
ping fetching with computation—but no so far ahead

10We made up this term; it seems to us an obvious idea, and
may be used elsewhere. Pointers to prior use of this concept
would be welcome.

as to squander fast memory.

Even this is something of an oversimplification,
however. It assumes that if a prefetch is initiated far
enough in advance to mask the latency, it will actually
do so. This may not be correct, however, if prefetches
are clustered too closely together in time.

3.4.2 Bandwidth Limitations

Even if prefetches are issued “far enough” in advance
to mask latency, there may be problems when too
many prefetches are issued in quick succession. Rather
than latency being the bottleneck bandwidth may be-
come the bottleneck.

Suppose, for example, that the prefetch predictor
makes two predictions at successive instruction cycles,
each correctly predicting a touch to a different block,
20 cycles in advance. If the miss latency cost i1s 20
cycles, including 10 cycles for latency and 10 cycles for
transfer, then only the first prefetch will be entirely
successful—the second prefetch will have to wait 10
cycles for the first one to finish, before the bus becomes
available again to transfer the block.

If more than two prefetches occur in quick succes-
sion, this problem may be exacerbated. At some point,
the bus bandwidth becomes saturated, and prefetches
can only be satisfied as fast as blocks can be trans-
ferred. At this point, the problem is really that there
simply isn’t enough bandwidth to satisfy the pro-
grams’ needs for data. The only way to solve this
problem without increasing the available bandwidth is
to space the prefetch predictions out over more time.
If a program touches a lot of memory over a short pe-
riod of time, prefetches may have to occur very far in
advance to avoid bandwidth limitations. In general,
this 1s quite difficult.

This issue has not been studied in any depth. In
some cases, detailed simulation studies have shown
prefetching policies to be ineffective, and the con-
clusion has been drawn that there was not enough
overlap. We believe that in at least some of these
cases, overlap may not have been the problem—
unrecognized bandwidth limitations may have been
the bottleneck. For a given memory system, it doesn’t
matter much which is occuring, because either way the
system runs slowly. In terms of memory hierarchy de-
sign, however, the difference is crucial—rather than
suggesting that prefetching doesn’t work, it may sug-
gest that bandwidth limitations are more important
than previously realized.

3.5 Prefetch-always vs. Demand
Prefetching (Prefetch-on-miss)

Prefetching policies are often categorized by whether
prefetches only occur at actual misses, or may occur
at any time, whether a miss occurs or not. In high-
speed silicon cache memories, each has its advantages.
In virtual memory systems, on the other hand, usually
prefetch-on-miss makes more sense.

The reason for this is that latencies in virtual mem-
ory systems are huge, and the overlap ratios are cor-
respondingly tiny, but another trick can be used to
effectively increase overlap for some prefetch policies.

Rather than overlapping normal program execution
with prefetching, it is possible to overlap two fetches,
because of the peculiar characteristics of disk access
times.

At this point, it is important to note that disks are
not really “random access” devices, in the sense that
main and cache memories are. The cost of accessing a
block is very strongly dependent on which blocks have
just been accessed. In particular, accessing blocks that
are widely separated on the disk generally incurs a
seek—the read head must be repositioned—and of-
ten a significant cost in rotational latency. In con-
trast, reads of sequential disk blocks are often vastly
cheaper—once a block has been read, reading the next
block is much, much less expensive. Reading a random
block costs a seek and rotational latency, but reading
the following block simply requires waiting for it to
pass under the read head.

Because disk block access times are far from uni-
form, some prefetching policies are far, far cheaper
than others. If the block we want to prefetch hap-
pens to be the next block on the disk, the read head
is already in the right position, and all we have to do
is continue reading. Transferring an extra block may
only take about a millisecond, while the block passes
under the read head, rather than taking several mil-
liseconds to seek to another track and wait for the
desired block to come under the read head.

The most common kind of prefetching policy for
disks is therefore sequential prefetching of disk blocks.
When a disk read occurs, the prefetch policy simply
requests the next block on the disk, too.

Rather than overlapping computation with 1/0,
this effectively overlaps the latencies of multiple /O
operations: in effect, we combine the secks for multi-
ple blocks into one, and the additional “seeks” are free.
For the extra blocks, only the transfer cost remains.

[this happens in silicon memories as well,

29

but to a less dramatic degree, because of row
latching in 2D memory units...]

3.6 Replacement Policy for Prefetched
Blocks

[how long to keep prefetched blocks? Prefetch
time-to-payoff relative to replacement interval]

[added stuff to earlier section about this...
elaborate here, or bag it?]

4 Clustering to Improve Spa-
tial Locality

An alternative to conventional prefetching is cluster-
ing, which is the grouping of related data objects or
blocks within larger blocks to improve spatial locality.
The best-known kind of clustering is grouping of data
objects such as records within virtual memory pages or
disk blocks. It is also possible to group smaller blocks
within larger units relevant to slower memory, such as
grouping several virtual memory pages within larger
units of disk transfer to improve paging performance.
By grouping related data, spatial locality can be im-
proved so that normal demand fetching or sequential
prefetching works better. This is especially appeal-
ing in reducing disk seeks; since disk latencies are so
high that overlaps are usually low, and nonsequential
prefetching is unlikely to yield significant benefits.

4.1 The Ubiquity of Clustering

While clustering may seem unusual, it actually is not.
It arises in obvious guises in systems such as object-
oriented databases, but in less obvious guises in vir-
tual memory systems, file systems, memory allocators
and garbage collectors, and compilers and linkers. In
general, any mechanism that allocates storage (or ar-
ranges how data are stored) performs clustering, in-
tentionally or not, because it decides which items go
where. Many such mechanisms are intentionally de-
signed to cluster things according to some principle or
other, but some are not—the fact that they perform
clustering goes unrecognized.

Many virtual memory systems group pages together
dynamically during paging, writing out groups of
pages together. This is usually not recognized as clus-
tering in the traditional sense, but this mechanism

30

could be exploited to improve spatial locality if done
well.

Most file systems perform some form of intentional
clustering, if only to keep files stored mostly se-
quentially to optimize sequential reads and/or writes.
Many also cluster file metadata (such as directory in-
formation) so that it can be accessed without fetch-
ing the contents of files. Log-structured file systems
[RO91] provide tremendous flexibility for clustering,
although their potential has hardly been explored.
(Work to date has concentrated primarily on decreas-
ing the cost of writes, or of avoiding fragmentation
of the disk, but an LFS’s ability to store any data
anywhere on the disk opens up many possibilities for
improving spatial locality, reducing read costs as well
[SKW92].)

Conventional memory allocators (like C’s malloc()
and free()) also implicitly perform an important kind
of clustering, simply by choosing where in memory to
put objects when they are initially allocated. A good
understanding of the principles of clustering could lead
to the design of better allocation algorithms with im-
proved spatial locality, or to better choices among the
many available allocator algorithms [WINB95].

Copying garbage collectors [Wil] perform clustering
at each garbage collection, grouping objects accord-
ing to the reachability traversal by which the collector
identifies the live objects.

Compilers and linkers perform clustering of program
code and data. A compiler groups procedures together
in some order, often the order that they are declared
in a source file. A linker groups compiled modules
together into executable files, arranging larger units
into an order that will be reflected in memory when
the program is loaded.

4.2 A Unified View

Clustering is poorly understood, perhaps even more
poorly than prefetching. We believe that the issues
in clustering are very similar to the issues in prefetch-
ing, and that this point has generally been overlooked.
Issues of timescale relativity have not generally been
addressed. A wide variety of clustering techniques has
been used in various systems and in various simulation
studies.

The literature is incoherent; some strategies have
been tried in some contexts (such as copying garbage
collectors), and others in other contexts (such as
object-oriented databases), but few techniques have

been broadly applied. Some techniques have only been
experimentally evaluated using synthetic data, which
(we will argue) is unsound.

We believe that research in this “area” has been
hampered by the fact that workers in clustering are
spread through several different technical communi-
ties (operating systems, programming languages, data
bases, etc.) and seldom read or criticize work in re-
lated areas. A general model of clustering has not
been adopted or validated, and relevant work in re-
lated areas is frequently overlooked.

In this section, we introduce a new model of the
clustering problem, focusing on issues of timescale rel-
ativity and the satisfaction of multiple clustering goals
for varying access patterns. Some of these ideas are
implicit in some prior work, but have not been fully
developed and are not widespread. There has been no
unified presentation that clearly defines the clustering
problem, and important issues have usually been over-
looked in most of the mainstream clustering literature.

After presenting our intuitive model of the cluster-
ing problem, we then survey various basic kinds of
clustering techniques, and applications of those tech-
niques to particular kinds of systems.

4.3 Goals of Clustering

One goal of clustering is clearly to group related data
together, so that fetching large blocks is effective; a
fault on an item within a large block should be a
good predictor that other items (data objects such
as records, or small blocks) in the same block will be
touched “soon.” This corresponds to prefetching in
that good clustering, like prefetching, can reduce miss
costs directly.

On closer examination, however, it i1s clear that
other issues come up in clustering, as they do in
prefetching, but in subtly different ways.

In some kinds of clustering, like the grouping of
small data objects within virtual memory pages in
a conventional memory hierarchy, individual objects
cannot be evicted independently, as prefetched blocks
can. We will call this a simple clustering scheme. A
simple clustering scheme cannot “cut its losses” the
way a prefetching scheme can, by evicting prefetched
items early if they are not actually touched, or if they
remain active for different amounts of time after being
loaded into fast memory.

A good prediction function may therefore be more
critical for simple clustering than for traditional

31

prefetching—ideally, the clustering policy should
never have to cut its losses, meaning that the items in
a block should always be accessed together, not just
fetched together and soon touched. If it ever happens
that some items in a block are touched at very dif-
ferent times than other items, that implies that some
items will have to be kept in memory unnecessarily,
and waste space.
The real goals of clustering are therefore:

e To together group items that are accessed to-
gether, to improve the effectiveness of simple fetch
policies with a large fetch size.

e To separate items that are accessed differently, so
that accesses to some objects do not force others
into memory, or force them to stay in memory,
polluting the cache.

These two goals can be in conflict. If items are some-
times accessed together, but sometimes not, should
they be clustered together in a block, or not? In gen-
eral, this seems like a hard problem, and one that
depends on timescale relativity in subtle ways. Luck-
ily, timescale relativity also comes to the rescue, and
shows that it is not usually as hard as it might seem
at first.

To achieve good prefetching, we need two things:

e A good prediction function, that predicts which
objects will be accessed together with a fair de-
gree of reliability, and

e A good strategy for clustering, based on that pre-
diction function, which will minimize wasted I/0O
and cache space usage.

We will address the second issue first. For the mo-
ment, assume that we have a magical prediction func-
tion that reliably predicts actual access patterns, and
we are trying to come up with a good clustering.

This is actually a fairly good approximation of some
clustering problems; such as the offline grouping of
program code and data based on profile information
derived from traces of actual program runs. (In such
a situation, the prediction function just predicts that
future access patterns will strongly resemble those of
the training runs; this prediction may not be entirely
valid, but it is often the best available information.)

4.3.1 Timescale Relativity in Clustering

To begin with, we must have a timescale-relative no-
tion of what it means for items to be accessed “to-
gether.” For any given memory size and miss cost,
“together” means within a period of time that is com-
parable to the timescale of cache replacement.

For example, for a small high-speed cache memory,
blocks may be considered to be accessed “together” if
touches to them occur within a few thousand instruc-
tion cycles of each other. If they are touched a mil-
lion instruction cycles apart, they probably shouldn’t
be considered to be accessed together, and clustered
together, because that would amount to issuing a pre-
fetch prediction far in advance of the actual touch:
bringing the predicted item into fast memory at that
point is likely to waste space, and may do no good
at all, because the block may be evicted before the
predicted item is touched.

On the other hand, for the purposes of clustering
virtual memory pages, the very same access pattern
may be interpreted as meaning that the items are ac-
cessed “together.” A difference of a million instruc-
tions is small at the timescale at which virtual mem-
ories operate—fetching things a millisecond sooner or
later makes essentially no difference to the effective-
ness of prefetching. What matters is whether the data
will be accessed “soon” on a timescale that is usually
seconds or minutes, and may be longer. (Keep in mind
that a normal virtual memory has several thousand
pages, and can only fetch or evict a hundred or so per
second, even when it is completely I/O-bound.!?)

While the issue of timescale relativity complicates
our analysis slightly, it actually makes the real prob-
lem easier—it means that for any given memory con-
figuration, we can ignore most of the information
about the access patterns. For a small memory, we
can ignore large-scale patterns, and just focus on av-
eraged short-term statistics. For a large memory, we
can ignore short-term patterns.

For the time being, assume that we are talk-
ing about clustering objects into pages for a simple
demand-paged virtual memory system. In this case,
we need to group together objects that are typically
accessed within (roughly) a few seconds of each other.

For any reasonable size of memory, an important

11'We have oversimplified slightly here, in a way that will be
rectified later. The relevant measure of time is not wall-clock
time or CPU time; it is relative to the number of blocks touched.
Thus two items are touched “together” if the number of other
blocks touched in between is small relative to the memory size.

32

point to notice is that it is not important to group
particular pairs of related objects into the same page.
For example, suppose we have several objects, A, B,
C, and D, which are always accessed together and in
that order when any of them are accessed. Suppose
that we can fit two of them into a block. We might do
the obvious thing, and group A and B together in one
block, and €' and D together in another. This would
clearly be a good clustering.

On the other hand, we could also put A and D to-
gether in one block and B and C together in another.
Either way, when we access the items in order, we
will incur two faults, and we will bring them all into
memory very quickly. It doesn’t really matter much
how they are grouped into pages, as long as the set of
items that are accessed together is grouped into a set
of blocks.

Unless the set of pages is very large, we can assign
the items to blocks in any way we ltke with very little
difference in performance.

How large is a large set? That i1s, how much freedom
do we really have? Consider the fact that most levels
of a memory hierarchy usually have several hundred,
or more likely several thousand blocks. Splitting a
group of closely related objects across several pages
may cost essentially nothing—a few pages of data may
be fetched slightly earlier than necessary, but if those
objects are also touched reasonably soon, it doesn’t
matter.

Consider a more realistic example, where we have
a few thousand items, known typically to be accessed
together, which we must cluster into a hundred blocks.
In the worst case—if we assign the set of items into
the set of blocks in the worst possible way—we will
waste less than a hundred blocks by “prefetching”
some 1tems earlier than necessary. For a cache with
thousands of block frames, this is unlikely to make a
signficant difference in cache performance; we’ll waste
at most a few percent of our cache space. Equally
important, if the items are known to be accessed at
roughly the same time, we’ll waste that space very
briefly—just until we get around to touching the “pre-
fetched” items.

As long as we know that the set of items will be ac-
cessed at roughly the same time, and the set is small
relative to the size of memory, how we group partic-
ular objects into particular pages is almost irrelevant.
The “prefetching” due to clustering will be successful,
because the “extra” objects in faulted on pages will
be touched fairly soon.

This means that we have considerable leeway in
grouping of objects that are accessed together—we
need not focus on grouping closely related pairs of ob-
jects into single pages, or even closely-related small
groups of objects onto a few pages. That’s a good
thing, because we must deal with items that are not
always accessed together, and try not to group them
into the same blocks.

4.3.2 Keeping Semi-together Items Semi-to-
gether

So far, we have assumed that we are clustering to-
gether items that are known to always be accessed
together, if at all. This is only half the problem. The
other problem is keeping items that are sometimes ac-
cessed differently apart. We should avoid grouping
items in the same page if some of them may be ac-
cessed without the others being accessed at roughly
the same time. (Again, the “same time” is relative
to the size of memory, and the information in needn’t
be precise in general. For virtual memories, it can be
very coarse.)

For example, suppose we refine our example of a few
thousand data items being clustered into a hundred
blocks. Let’s say that 20 blocks’ worth of those items
are always accessed if any of them are, but the other
60 blocks’ worth are sometimes not accessed at those
times. So, for example, some program phases may
access the entire set of items, but others only access
the 20 pages worth of items that are always of interest.

This is representative of an apparently common sit-
uation in a variety of programs. For example, in a
database-like system, one program might iterate over
a set of commonly-used records, while another might
iterate over that same set plus a set of related records
that give more information about those items.!?

12 This principle is well-known in physical design of relational
database systems. A logical relation is often split into multiple
“physical” tables (data structures such as sequential files or B4+
trees), keeping only those attributes together that are always or
almost always accessed together by all common queries.

Similar issues arise in the implementation of interactive pro-
gramming systems, where the different kinds of information
about varibles are often intentionally separated into separate
tables; a compiler may examine variable name strings, as well
as value fields and other information, but a running program
may only access the value fields. For example, in Common
Lisp implementations, it is common to separate the parts of a
“symbol” table into a set parallel vectors (1-D arrays), rather
than using a single vector of records. Among other things, this
separates the fields that are likely to be accessed only by the
compiler (such as variables’ name strings) from those that are

As another example, consider file systems that sepa-
rate directory information from the contents of normal
files. Some programs may simply traverse directories,
while others mostly read file contents, and others do
a combination of these things.

We believe that this is common in many (if not
most) nontrivial, data-intensive systems—that is,
most programs for which locality is important. Most
programs perform a variety of different operations on
overlapping sets of data, using indexing data struc-
tures to keep the different characteristic access pat-
terns efficient.

In this example, we want to do two things:

e Keep the entire set of 100 blocks’” worth of items
“together,” in the sense that they are grouped
into a set of 100 blocks, and

e Avoid intermingling the 20 blocks of items that
are accessed by both access patterns with the 80
blocks of not-always-accessed items. That is, the
20 blocks of often-used items should be kept es-
pecially together, in a small subset of the blocks
that keep the overall group together.

If we don’t satisfy the second goal, we’re likely to
have to fault in all or nearly all of the 100 pages when-
ever we access the 20 pages worth of frequently-used
items. If we do satisfy it, we can still satisfy the first
goal. The goals are not actually in conflict, even if it
may seem that way at first.

4.3.3 An Example Clustering Problem.

Consider Figure 5. In this picture, an index data
structure (whose structure is not shown) holds point-
ers to a series of n data objects a, each of which has
pointers to several auxiliary objects, b, ¢, d, and e. For
simplicity, assume that the clustering algorithm deals
well with indexing structures and does not intermin-
gle the indexed items with the internal structure of
the index itself. (This will be elaborated later.) Just
consider the two-dimensional set of objects (a...e by
1...n).

Many clustering algorithms will notice that each ob-
ject a is directly connected to the corresponding ob-
jects b, ¢, d, and e, and cluster these directly-reachable

likely to be accessed by running applications (such as variable
“binding cells” that hold variable values).

More generally, parallel arrays are often used in array-
intensive programs, rather than arrays of records, to separate
out fields that are accessed by different phases of a program.

33

o

Figure 5: An Example Data Structure to be Clustered.

. sortof
. ordered
index

objects with it. This seems reasonable, and may in
fact be the right thing to do, depending on access pat-
terns in the program that operates on the data—but
often it is the wrong thing to do.

Suppose that we have the following frequent access
patterns:

e The index is traversed sequentially, and each ob-
ject a is touched, but none of the objects it refer-
ences 1s touched.

e The index is traversed sequentially, and each ob-
ject a is touched, and its pointer fields are tra-
versed to touch its b, ¢, d, and e.

If these are the only important access patterns, the
objects a should be grouped sequentially, in index or-
der (more or less), and the other objects should be
grouped separately from the a’s, but in a similar or-
der.

Notice that even if the accesses to the objects are
not strictly sequential, in key order, this may still be
a very good clustering. If the index searches are non-
random, and similar keys are often used—to look up
objects that are “near” each other in the key ordering,
useful spatial locality will result. Bringing one object
a into the cache will also retrieve a set of other objects

a with similar keys. Bringing one object of the other
kinds will also bring in objects of those types whose
a’s have similar keys, and are therefore likely to be
accessed soon.

When is this likely to be a bad clustering? The
clearest case is when accesses to a’s exhibit no locality
in terms of the index keys (e.g., truly random accesses
to a’s), and each access to an a is followed by an access
to its b, ¢, d and e. In that case, each fault on an a
may be followed by a fault on another page or more
to retrieve the associated objects. On the other hand,
if the random accesses to a’s do not usually involve
accesses to the related objects, keeping a’s separate
may actually be beneficial.!3

For one likely access pattern, separating the a’s from
the b’s is likely to be very beneficial, and for another,
it 1s harmless. For another, however, it does harm.

This example illustrates three important points:

e Clustering algorithms should not be too local and
greedy. Grouping objects by local connectivity
may group together objects that should be sep-
arated, because they are not always accessed at
about the same time.

e Multiple access patterns may not cause goal con-
flicts in terms of clustering, as when grouping a’s
separately from their related objects for the first
two types of access patterns.

e Sometimes goal conflicts do arise, as in the case
where index probes may be random and random
accesses to a’s usually include pointer traversals
that touch the related objects.

4.4 Offline vs. Online Clustering

A clustering algorithm may be used online, to recluster
data dynamically according to actual access patterns.
For example, a virtual memory system might record
the order in which pages are actually touched, and in-
crementally regroup objects during normal operation
to dynamically tune the system to its workload.
Many clustering systems are offline, however.
Rather than performing clustering while programs
run, some information is used to group items together
before programs run, and during execution the clus-
tering cannot be changed. This 1s common in normal

13For example, if the a’s could all fit in memory, but the
entire data structure could not, then this would allow caching
the entire randomly-accessed data structure.

34

memory hierarchies, which provide little support for
fine-grained regrouping of objects within virtual mem-
ory pages.

Offline clustering clearly has less ability to adapt to
dynamic patterns of accesses than online clustering.
On the other hand, the potential of offline cluster-
ing has hardly been understood, much less explored
thoroughly, and it may well be that cheap offline tech-
niques can provide much better locality than systems
that don’t pay attention to clustering issues.

A particular weakness of offline algorithms is that
they generally cannot cluster items based on past pat-
terns of access to those items if the items only exist
at runtime. They only have data about references to
objects during past program runs, not during a future
run, and can only reorganize “persistent” data such
as file data, saved system heap images, and code and
data in executable files.

On the other hand, this weakness may not be as
crippling as it appears; it may be possible for an of-
fline system to abstract away from individual objects
and learn what works for clustering kinds of objects.
Lessons learned from prior experience can then be ex-
ploited in a (non-adaptive) online algorithm.

Simple examples of this include experimenting with
different memory allocation algorithms linked into a
program, so that a good one can be chosen for actual
use, or trying several module orderings when linking
a program, to find one that exhibits better behavior
during testing runs. More advanced approaches re-
quire the use of more advanced instrumentation and
analysis to observe the behavior of the program, and
guide the search for a likely clustering technique.

4.5 Sources of Information to Guide
Clustering

Whether online or offline, real clustering systems usu-
ally rely on partial information to guide clustering,
using heuristics in the prediction function. Obviously,
any real and general clustering system is unlikely to
have exact and detailed information about future ac-
cess patterns, and must rely on past behavior or the
implementor’s intuitions.

If detailed information about access patterns is not
available; the clustering algorithm clearly must settle
for weaker knowledge, and rely more on heuristics to
provide a “prediction function” that can be used for
clustering.

Among offline clustering algorithms, some require

35

some information about the actual pattern of dynamic
accesses during “profiling” or “training” runs. Oth-
ers rely on simple heuristics, such as grouping objects
based on their pointer connections and/or their types.
Others rely on declarations provided by programmers.

Even among online clustering algorithms, however,
the amount of information available for clustering may
be severely limited. For example, in most systems,
there 1s no easy or affordable way to record informa-
tion about the order of accesses to individual small
objects. An online clustering system may therefore
have to rely on heuristics to estimate the prediction
function.

In some cases, an offline clustering algorithm may
have richer information than an online one. For ex-
ample, it may be possible to instrument a program
in fairly expensive ways to gather information dur-
ing training runs, but such expensive instrumentation
would be prohibitive for runtime use in normal oper-
ation. (For example, a program might be run under
a machine code interpreter to gather very detailed in-
formation, but it would run very slowly; normal users
would not generally pay this cost in actual use.)

4.5.1 Access Sequences

The best kind of information for guiding clustering
is actual access sequences, such as reference traces,
which show in detail the ordering of touches to individ-
ual items to be clustered. Such data can be analyzed
in a timescale-relative way to determine a good clus-
tering for the intended memory configurations (e.g.,
large memories or small).

In an offline algorithm, records may be kept of re-
cent access patterns, and this may be use to dynam-
ically reorganize data. This information might be in
the form of reference traces gathered during training
runs, or even during normal operation. The storage
and 1/0 cost of such information can be very large,
however.

For an online algorithm, efficiency is expecially im-
portant, so it is especially important to keep the over-
head low, and record only the most predictive infor-
mation. Some systems reorganize data periodically,
according to the order of first accesses to an object
within a period; all other information about access
order is lost.

4.5.2 Profiles

Some clustering systems are based on simple pro-
file data, which records the frequencies of cer-
tain operations—for example, how often a particular
pointer field of a particular kind of object is traversed.
This can be used to inform the clustering algorithm
of the importance of particular kinds of events during
execution.

Profile data can be misleading, however, because 1t
is usually not timescale-relative. Most profile-driven
clustering schemes are based on simple heat, either ob-
ject heat (which objects are touched the most times)
or link heat (which pointer links are traversed the
most). Typically, link heat is used to cluster objects
greedily, preferentially grouping objects linked by hot
links. Less greedy algorithms may be used, using
heuristics to group objects so that the total heat of
links across block boundaries is minimized [?].

Object or link heat may not be a good metric of the
importance of clustering objects together, however, for
two reasons:

e [t 1s not timescale relative. Heat is not timescale
relative (Sections 2.5.1, 7?7) and may be mislead-
ing. The importance of a reference to an object
(or a link traversal to an object) depends strongly
on the temporal pattern of references. Many ref-
erences to an object over a short period of time
may have little importance for clustering, while a
few references over a longer period of time may
matter much more.

e [t does not distinguish between overlapping work-
ing sets. Objects may have equal heat, but if they
are accessed at very different times, they should
generally not be clustered together. Similarly, if
two objects are reached from the same object via
comparably hot links, but the links are traversed
at very different times, the objects should not be
grouped together. (Section 4.3.3.

For example, if we note that we traverse pointers
from a’s to &’s 10 times as often as pointers from a’s to
¢’s, does that suggest that b’s should be grouped with
a’s, 1n preference to grouping ¢’s with a’s. Maybe so,
but maybe not.

Recall that the problem with LFU replacement was
that the count of individual touches to a page might
have little to do with its actual importance for caching.
Likewise, the frequency of a particular kind of pointer

36

traversal may have nearly nothing to do with the im-
portance of that kind of pointer link for clustering.

Suppose, for example, that links from a’s to b’s are
usually traversed during phases where little data is
actually touched, and locality 1s not particularly im-
portant because everything fits in the cache. (For ex-
ample, the same pointers may be traversed repeatedly
over a short period of time, during CPU-intensive iter-
ation over a fairly small set of objects.) Suppose that
in contrast, pointers from a’s to ¢’s are traversed dur-
ing very data-intensive phases that iterate over very
large volumes of data.

It may well be that the frequency of link traversals is
positively correlated with their importance for cluster-
ing, but this has never been demonstrated, and there
is every reason to question this assumption. Many
programs consist of different kinds of phases, includ-
ing very regular operations over large amounts of data
and much less regular, CPU-intensive operations over
much smaller amounts of data. This suggests that the
correlation between link traversal frequency and im-
portance for clustering could be negative in some of the
most crucial cases. Simple clustering by links (with-
out traversal frequency weights) may work as well or
better.

4.5.3 Reachability via Pointer Links

Many systems cluster data by reorganizing objects
according to the pointer links between them. For
garbage collected language implementations, this is
often done during copying garbage collection. For
object-oriented databases, it may be done during oc-
casional reorganizations of persistent data.

A reachability-based reorganization starts from
some set of “root” pointers, from which all objects
are directly or indirectly reachable. (In an object
database, this might be a top-level directory object,
which holds pointers to major indexing data struc-
tures. In a garbage-collected language implementa-
tion, this might be the set of pointers in local and
global variable bindings and registers.

Typically, reorganization happens during a traversal
of the data structures reachable from the roots. Some
exhaustive graph traversal algorithm is used, such as
breadth-first or depth-first, and objects are moved
to new storage as they are reached by the traversal.
(When an object that has already been reached and
moved is reached again, the traversal is short-circuited
at that object, and the pointer is simply updated to
point to its new location.) Since objects are copied to

new storage as they are reached by the algorithm, the
traversal order determines the clustering.

Simple graph traversals. Two common traversal
orderings are depth-first and breadth-first, but these
both have potential weaknesses. A depth-first al-
gorithm may tend to plunge far into the reachabil-
ity graph, traversing many pointers, grouping objects
that are only distantly related by pointer links. A
breadth-first traversal is more “even handed,” but
tends to decompose the reachability graph into lay-
ers. At the first layer (near the roots), it tends to
group siblings together, but as successive generations
of descendents are reached, it may group more and
more distantly related cousins together.

An alternative is to use a hierarchical decomposi-
tion [WLMO1] of the reachability graph, which tends
to pack pages with the nearest descendents of an ob-
ject, e.g., the first few levels of a tree, and then recur-
sively do the same for the descendents of the objects
on that page, packing each subtree into its own page
if possible.

For simple trees, hierarchical decomposition ensures
that the path from a root to a leaf is as short as pos-
sible, in terms of the number of blocks visited. This
closely resembles a B-tree, in that the upper levels of
the tree, when viewed as a block, effectively act as a
single larger node in a multiway search tree; this node
just happens to be internally indexed as a lower-arity
tree. Likewise, subtrees below this “node” (block) are
similarly packed, putting as many levels as possible in
one block.

Since linear lists are degenerate trees, a hierarchical
decomposition will pack successive elements of a list
into a block. (This also happens with depth-first and
breadth-first traversals.)

Simple graph traversals tend to cluster related ob-
jects together, in that objects with pointer links be-
tween them are typically more likely to be touched
together than objects that are not linked—typically,
an object is reached by following pointer links from
other objects. While this is much better than a ran-
dom organization [Bla83], it still may not be partic-
ularly good, because some pointer links may be far
more important than others in terms of locality.

A simple graph traversal clusters objects via point-
ers that may be traversed, but those pointers may not
be traversed, or may be traversed in some phases and
not others. This has four important weaknesses:

e Some objects may be reachable via multiple

37

paths, and a typical (greedy) clustering will group
objects together according to the first link en-
countered by the traversal, which may not be the
most important one.

e Some links may not be traversed much, and
grouping according to those links may give
“unimportant” objects equal weight, at the ex-
pense of grouping more important objects to-
gether.

e Some links may be traversed during some phases,
and others during different phases. Grouping ob-
jects according to the structure of the reachabil-
ity graph may intermingle working sets that are
separate at run time, wasting cache space when
only a subset of the objects are actually needed
in cache.

e Some links may be from indexes with extremely
poor locality, such as hash tables, and grouping
according to those links may make locality much
worse by grouping together objects which are ac-
cessed in randomized ways [WLMO91].

Type-sensitive traversals. To avoid some of the
problems with blind graph traversals, a reachability-
based algorithm may be enhanced by making it sensi-
tive to the types of objects that are encountered during
a traversal. Objects of different types reachable from
the same object may be clustered apart, in the expec-
tation that different kinds of objects may be accessed
differently [LWM92]. Some types may be treated spe-
cially, such as hash tables, so that objects are prefer-
entially clustered according to links that are likely to
yield better locality [WLM91].

Less greedy traversals. Most reachability-based
clustering schemes cluster the reachability graph as
though it were a tree—the first pointer to each object
is used to determine the object’s placement, and sub-
sequent pointers to the same object have no effect on
placement.

It would also be possible to take into account the
sharing of subgraphs of the graph; objects reachable
via multiple paths might be clustered apart from those
reachable via only a single path. This might tend to
separate objects used during multiple kinds of phases
from those used during a single kind of phase, espe-
cially if the different paths are from different large
indexing data structures.

4.5.4 System- and Application-specific Decla-
rations

While the ideal clustering system would be fully au-
tomatic, it is also possible to exploit programmers’
knowledge of application behavior to find a good clus-
tering. Programmers often know that certain sets of
objects are likely to be used together, while others are
only used during distinct phases.

Link weight declarations. Some systems provide
a mechanism for the declaration of the importance of
links. For example, when defining a class or record
type, the programmer may specify that a certain
pointer field should have strong weight in determin-
ing a clustering, and others should not.

Explicit clustering directives. In other systems,
objects may be assigned to clustering groups when
they are allocated, or the programmer may give hints
that certain objects should be clustered together.

A common way of doing this is for the underly-
ing storage mechanisms to maintain separate stor-
age pools, which may just be sets of pages. (These
are variously known as “areas,” “segments,” “arenas,”
“files,” or “heaps.”)

In several systems, a programmer can explicitly
specify which storage pool to put an object in when
the object is allocated. Alternatively, the programmer
may give a hint that an object should be clustered near
some other object, and it is the allocator’s job to at-
tempt to find a satisfactory clustering based on the
hints.

These explicit clustering directives may be aug-
mented with other clustering techniques. For exam-
ple, the programmer may specify which objects belong
in which storage pools, but the system may augment
that coarse grouping by clustering objects within a
pool according to a reachability-based scheme.

4.5.5 Discussion

4.6 Some Clustering Schemes

4.6.1 On-the-fly Reorganization of Virtual

Memory Pages on Disk.

In its normal operation, a normal virtual memory sys-
tem detects the order of accesses to pages in a time-
scale relative way—at a page fault, it is known that
a page is being touched for the first time since it was
evicted. A virtual memory system typically maintains

38

an approximation of an LRU recency queue as well,
and therefore can detect the order of last accesses to
pages over the timescale relative to the cache.

It is natural to attempt to exploit this information,
by grouping virtual memory pages on disk in an or-
der that will improve locality for future accesses. By
ordering pages on disk in a way that reflects dynamic
access patterns, and using sequential prefetching, it
may be possible to fetch more useful data per seek.

In [BS76], Baer and Sager attempted to apply this
principle in simulations of a virtual memory system.
Their simulated virtual memory system regrouped
data at eviction time, grouping the four least-recent-
ly-used pages together in a block.

Unfortunately, the results were disappointing. How-
ever, on examination of their experimental design,
it appears that they may have chosen unrealistically
small memories, and inappropriately large block sizes.
(This was apparently due to the fact that their test
programs simply didn’t use much memory.) Their
memory sizes were generally less than 100 pages, and
sometimes much less; in terms of current systems, this
means that the page size was very large with respect
to the memory size, and the system was already fetch-
ing too much data at each seek. (Recall that mod-
ern memories typically have several hundred or even
several thousand blocks at each level of the memory
hierarchy.) Naturally, any extra prefetching is likely
to exacerbate this problem, so a negative result for
prefetching may be pessimistic.

For programs with larger data sets, and a memory
with several thousand blocks, such a dynamic reorga-
nization may work much better. Examining Baer and
Sager’s data, there appears to be a trend of improving
performance (relative to a non-prefetching policy) as
memory size increases. Extrapolating to a more real-
istic ratio of memory size to block size, it appears that
Baer and Sager’s technique may in fact be worthwhile.

4.6.2 On-the-fly Reorganization of Objects in
an Object-oriented Memory Hierarchy.

More recently, the MUSHROOM group at the uni-
versity of Manchester have simulated the effects of
clustering individual objects in an “object oriented”
memory hierarchy. This system uses the same basic
principle as Baer and Sager’s, but relies on the use of
a high-speed cache architecture that caches arbitrary-
sized objects. This allows the reorganization of indi-
vidual objects within pages, rather than just reorga-
nizing pages within larger units of disk transfer.

The MUSHROOM simulations produced encourag-
ing results, although the tested workload consisted
primarily of small Smaltalk programs. Further ex-
perimentation is needed to assess the effects of this
promising technique for other (and larger) workloads.

The main drawback to the MUSHROOM system
is that it relies on an unusual hardware architecture,
which supports the relocation of individual objects.
In general, this kind of architecture is more expensive
than traditional memory hierarchy designs. The im-
provements due to clustering must be weighed against
the cost of a novel hardware design.

4.6.3 On-the-fly Reorganization of Objects
during Incremental Copying Garbage
Collection.

Incremental copying garbage collectors based on
Baker’s algorithm naturally reorganize data in mem-
ory, in the order that they are reached either by the
garbage collector or the running application program.
An incremental collector traverses reachable data in
small units of traversal work, interleaved with small
units of application execution. A copying collector re-
locates objects as they are reached by the collector,
compacting them into a contiguous (or mostly con-
tiguous) region of memory. In Baker’s scheme, point-
ers touched by the running program are also incorpo-
rated into the collector’s traversal, and immediately
relocated. This requires a “read barrier,” which is
a special sequence of instructions executed at each
pointer operation, to detect whether a new object has
been encountered. (Lisp machines had special hard-
ware support for the read barrier, to avoid the extra
instructions at a cost in hardware and/or microcode.)
In [Whi80], White pointed out that the read barrier
could be exploited to reorganize data according to a
program’s actual access patterns. The garbage collec-
tor’s normal traversal of data structures could be sup-
pressed during most of a garbage collection cycle, so
that the only relocation was due to the program’s ac-
cessing pointers and the read barrier’s copying them to
the new heap region. (This can be augmented by hav-
ing the normal background traversal copy data into a
different region of memory.) Objects reached first by
the running program will thus be relocated and clus-
tered in the order in which they’re actually touched.
For Baker’s original algorithm, locality is still
quite poor, because a simple garbage collector tends
to touch a large amount of memory before it is
compacted—compaction is “too little, too late” to

39

avoid the major problem of failing to reuse memory
promptly [Wil]. Generational garbage collectors can
greatly reduce this problem [?], however, and the dy-
namic reorganization principle is applicable to incre-
mental generational copying collectors.

Courts [Cou88] applied this principle to the gener-
ational collector of the Texas Instruments Explorer (a
Lisp Machine), with good results.

The difficulty with this incremental copying scheme
is that the cost of the read barrier may be prohibitive
on standard hardware, slowing program execution by
several instructions at each pointer operation. Other
incremental collection techniques may perform better
in terms of raw performance [WJ93, Wil], but do not
provide a “hook” for reorganizing data occording to
access patterns.

4.6.4 Profile-driven Reorganization of Disk
Cylinders

Heat-based reorganization has been used in disk stor-
age, to perform a simple kind of very coarse-grained
clustering and reduce seek distances. Entire disk cylin-
ders are exchanged, putting the hot cylinders near the
center of the disk head’s throw, so that most seecks
will be to locations near the center. (This is not the
center of the disk, but the center of radius of the disk,
between the spindle and the edge of the platter, over
which the disk head seeks.)

The best-studied technique for disk cylinder reor-
ganization simply puts the hottest cylinders near the
center of the head’s throw, so that seeking from one
hot cylinder to another is cheap, and seeking to cooler
cylinders is more expensive [VC90]. This is called
an “organ pipe” arrangement, because a histogram
of disk seeks looks like the pipes of a church organ—
tall columns in the middle, with decreasing column
heights toward the sides.

Timescale relativity and “heat” in disk reor-
ganization. The effectiveness of the organ-pipe ar-
rangement has widely been interpreted as evidence
that heat-based clustering is likely to be effective in
other contexts (e.g., in [?]). However, it is important
to realize that the “heat” used in disk reorganization
is generally not simple heat in the sense that we have
used it so far.

The statistics that are used for disk reorganization
are usually based on disk seeks, not simple block ac-
cesses. The profiles used to guide reorganization are

not profiles of touches to blocks by application pro-
grams, but of touches that miss the main-memory
cache. The use of miss profiles rather than touch pro-
files improves timescale relativity. Frequent touches
to cached blocks—which are not generally important
in terms of locality—do not get recorded.

Replicating hot blocks.

4.6.5 Reachability-based Clustering in Copy-
ing Garbage Collectors

4.6.6 Reachability- and Type-based Cluster-
ing in Copying Garbage Collectors.

4.6.7 Allocation-order and Size-based Clus-
tering in Conventional Memory Alloca-
tors.

4.6.8 Profile-driven Organization of Code and

Statically Allocated Data at Link Time.

4.7 Discussion

5 Architectural Considerations

5.1 Basic Memory Hierarchy Organi-
zation

5.1.1 Interactions Between Levels

5.1.2 Basic Structure of High-Speed Caches

5.1.3 Basic Structure of Virtual Memories

5.1.4 Disk I/0

5.2 High-speed Cache Memories

5.2.1 Assoclativity

Fully associative caches.
Set-associative caches.
Direct-mapped caches.
Associativity and Speed.
Assoclativity and Locality.

Victim Caches.

40

5.2.2 Write Policy and Write Buffering
Write-back.

Write-through.
Write-around.

5.2.3 Split Instruction and Data Caches
5.2.4 Subblock (Sector) Caches
Write-validate.

5.2.5 Virtual vs. Physical Indexing and Tag-
ging
5.2.6 Prefetching

Simple prefetching.
History-based prefetching.

5.3 Virtual Memory

5.3.1 Translation Lookaside Buffers

Caches) and Traps

(PTE

5.3.2 Implementing Replacement Policies

FIFO.

Protection Bits and Segmented Queue Approx-
imations of LRU.

Reference Bits and Clock Algorithms.
Dirty Bits and Write Policy.

5.3.3 Variable-Space Policies and Process

Scheduling

Working sets and allocation of memory to pro-
cesses.

Thrashing.
Job scheduling to avoid thrashing.

5.3.4 Page Tables
Multilevel Page Tables

Inverted Page Tables

5.3.5 Memory-mapped files
5.3.6 Shared memory and mapping
5.3.7 Sharing and Protection Issues

5.4 Disk Storage Management
5.5 Some Novel Memory Systems

5.5.1 Flash RAM

5.5.2 Distributed Caching and Distributed
Virtual Memory

5.5.3 Compressed Caching

6 Toward a Deeper Under-

standing of Reference Local-
ity
[this is partly redundant now... this section
will elaborate earlier ideas based on interven-
ing sections on architecture, etc., pulling things
together better]

[As noted earlier, | designers of memory hier-
archies generally assume some degree of temporal and
spatial locality, but the causes of locality are seldom
examined in detail. Locality of reference is a complex
function of regularities in data, data structures and al-
gorithms used to manipulate the data, and compiler,
linker, and allocator decisions that determine where
those data are in memory at run time.

6.1 Where Does Locality Come From?
(revisited)
6.1.1 Clustering

6.1.2 Checkpointing
6.1.3 Allocation and (Re-)Initialization

Initialization Misses. [So far, we have usually
assumed that all misses cost the same amount.]

This i1s not always true, however, as we noted in
[the architecture section]. A particularly impor-
tant case where it may not be true is initial misses,
the first time a block is touched. At first glance, it
may seem that initial misses must always cost what
any normal miss costs—after all, a block is generally

not brought into the cache until the first time it is

41

touched. This is not necessarily true, however, de-
pending on why the miss actually occurs.

If the miss occurs because data are actually being
faulted in from slower storage, then generally the miss
costs the normal amount. On the other hand, if a
block is being used for the first time, and initialized
with new data, it may not cost anything at all—rather
than faulting the blocks old contents into the cache
from slower storage, it may be possible to “create” an
empty block “out of thin air,” in the cache. This re-
quires that the cache distinguish between a touch to a
pre-existing block and a creation of a “new” block,
and treat each appropriately. In either case, how-
ever, a block frame 1s required to store the new block,
and this usually requires the eviction of an older block
cached there; if that block is dirty, its contents must
be written back to slower storage.

This kind of optimization is performed by most vir-
tual memory systems. When a program requests more
virtual memory from the operating system, the oper-
ating system knows that this is virtual memory that
has never been touched before, and does not have
any “old” contents. The virtual memory system may
therefore reserve a block frame in the cache, and sim-
ply initialize it with zeroes, or leave its old contents in
place on the assumption that the program will over-
write them as new data objects are created in the
page.'*

(Typically, new memory is not requested from the
operating system directly by an application program.
The application program usually uses a library (e.g.,
containing the