
Data Structures

Fall 2019

Second Midterm Exam — Solutions

1. (20 points) Provide short answers to the following questions:

(a) Question: What does it mean for a binary search tree to be balanced?

Answer: The depth of the deepest leaf is no more than some constant factor k
(typically 2) of the shallowest leaf’s.

(b) Question: How is a hash function used within a hash table implementation?
What makes a particular hash function good or bad?

Answer: A hash function maps each key to an array index (i.e., a hash table
position). A good hash function uniformly distributes the keys among the avail-
able indices.

(c) Question: What is the worst-case running time (in Big-O terms) for performing
a lookup operation on an m-entry hash table with chaining that contains n keys?
Explain.

Answer: O(n). In the worst case, the hash function maps all of the keys to a
single table position (that is, all keys collide in the table), placing all n keys into
a single linked list. The lookup on that linked list requires a linear search, which
requires O(n) operations.

(d) Question: What does it mean for the operations of a splay tree to take amor-
tized O(lg n) time?

Answer: Over m operations on the splay tree, for a sufficiently large m, the
total time for all of those operations is O(m lg n). Thus, the average time per
operation, over that sequence of operations, is O(lg n).
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2. (20 points) Consider each of the following use cases of a Dictionary ADT of keys. For
each, specify which data structure you would implement for that use case, and the
relevant Big-O running times that motivated your choice.

(a) Question: The keys are arbitrary strings of characters. Insertions and removals
happen regularly and with no particular pattern, and lookups are frequent.

Answer: Hash table (with or without chaining). Strings present an infinite key
set, and there is no need for them to be ordered, making the average case O(1)
time for each operation a good fit.

(b) Question: The keys use the full range of 32-bit integers. Keys are regularly
inserted in groups, and may be inserted in order; for a given key, it is frequently
the case that its successor—the next largest key—needs to be found.

Answer: Balanced binary search tree. The need to find successors suggests the
need for ordered storage of the keys, and allows that value to be found in O(h)
time (which h is the height of the tree). Because insertions may be themselves
in-order, balancing of the tree is likely necessary so that h = O(lg n).

(c) Question: The key range is from 1 to 1000. After an initial set of insertions,
there are frequent lookups. Periodic in-order printing of the keys does occur.

Answer: Array of booleans, with one entry per possible key value. The limited
key range makes worst-case O(1) on the insertions and lookups easy to achieve.
The in-order printing requires O(m) operations (where m is the range of key val-
ues), which is worse than the O(n) for in-order traversal of other structures, but
the small value for m limits the cost.
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3. (20 points) Question: Consider an implementation of a hash table with linear probing.
It uses the array storage to keep pointers to the keys; it also uses a boolean array,
used, to record which locations in storage have ever contained a key.

Write the method lookup() for this hash table implementation, searching for a
given key, and returning (as a boolean) whether it was found.

Answer:

public boolean lookup (E key) {

int index = hash(key);

int original = index;

while (storage[index] != null || used[index]) {

if (key.equals(storage[index])) { return true; }

index = (index + 1) % storage.length;

if (index == original) { break; }

}

return false;

}
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4. (40 points) Assume that the nodes of a red-black tree are defined like so:

public class RBNode< E extends Comparable<E> > {

public E key;

public RBNode<E> parent;

public RBNode<E> left;

public RBNode<E> right;

public boolean red;

public RBNode<E> (RBNode<E> parent) {

this.key = null;

this.parent = parent;

this.left = null;

this.right = null;

this.red = false;

}

public boolean isNullLeaf () {

return key == null;

}

}
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(a) Question: Write a method blackHeight() that returns the black height of
the subtree rooted at a given node n. This method should return -1 if it finds
that the black heights of the subtrees of n are not the same—that is, that the
subtree is not part of a valid red-black tree.

Answer:

public int blackHeight (Node n) {

// Base case: No tree to traverse.

if (n == null) { return 0; }

// Base case: Null leaves are black.

if (n.isNullLeaf()) { return 1; }

// Find the black heights of the subtrees.

int lh = blackHeight(n.left);

int rh = blackHeight(n.right);

// If either subtree is invalid, or the subtrees black

// heights don’t match, then this subtree is invalid.

if (lh == -1 || rh == -1 || lh != rh) {

return -1;

}

// The height of this tree is either:

// (1) the height of either subtree, if n is red, or

// (2) the height of either subtree + 1, if n is black.

return (n.red ? lh : lh + 1);

}
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(b) Question: Write a method rotateLeft() that performs a left rotation on a
given node n.

Answer:

public void rotateLeft (Node n) {

// Grab the parent (p) and child (c). c will rotate

// to take n’s place below p.

Node p = n.parent;

Node c = n.right;

// c’s left subtree becomes n’s right subtree.

n.right = c.left;

c.left.parent = n;

// n rotates down to become c’s left child.

c.left = n;

n.parent = c;

// If p exists, have c replace n as the right or

// left child, as appropriate.

c.parent = p;

if (p != null) {

if (p.left == n) { p.left = c; }

else { p.right = c; }

}

}
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