
INTRODUCTION TO COMPUTER SCIENCE I
LAB 6

Divide and Conquer

1 Making a fortune, take II
Recall, from Lab-5, the tale of how you found a list of the closing stock prices for one particular
stock, going n days into the future. In that assignment, you devised a solution that could compute
the ideal days on which to buy and sell that stock, assuming one single purchase followed by one
single sale. This solution, which required O(n2) operations, was tractable so long as n was in
the low-hundreds-of-thousands. Since n represented a number of days, that solution was certainly
sufficient, given that n = 100, 000 corresponds to future prices for the next 274 years.

But buying and then selling on a given day is soooo twentieth century. These are the days of
high-speed algorithmic trading, where stock prices change by the millisecond. In keeping with
that change, you now find, on the fabled D-level in Frost, a computer that allows you to connect
to a database of future stock prices given at millisecond intervals throughout. At that rate, n =
100, 000, where n is just a one millisecond of trading activity, corresponds to a mere 1 minute and
40 seconds.

Given this change in trading speed (and the price records that go with it), we need an algorithm
that can handle much larger n in a reasonable amount of time. . .

2 What you must do
Create a directory for this project, change into it, and grab source code:
bit.ly/COSC-111-lab-6-source

Open the Java source code file, FastPickEm.java, with Emacs/Aquamacs. There, you will
find something nearly identical to the starting code from Lab-5. Indeed, other than changing days
into milliseconds, the rest is identical. Again, the key method with which you should concern
yourself is findBuySell(), which, given an array of future prices, calculates and returns an
array that contains:

• [0] The millisecond at which one ideally should buy the stock, and

• [1] The millisecond at which one should sell it.

Therefore, this method must return an array of length at least 2, where the value at index [0]
contains the buy-millisecond, and the value at index [1] contains the sell-millisecond.1

1Notice the use of the phrase, at least. You could return an array that is longer, carrying additional information in
those additional entries, This idea is a big hint.

1

https://sfkaplan.people.amherst.edu/courses/2019/spring/COSC-111/
https://sfkaplan.people.amherst.edu/courses/2019/spring/COSC-111/assignments/lab-6.pdf
https://sfkaplan.people.amherst.edu/courses/2019/spring/COSC-111/assignments/lab-5.pdf
https://bit.ly/COSC-111-lab-6-source


2.1 A fast solution
Write the findBuySell() method. Specifically, employ the recursive divide-and-conquor ap-
proach discussed during lab. For this approach, in order to find the ideal buy/sell times given a list
of n prices, the solution should:

1. Split the array into halves. Notice that this splitting can be literal—two new half-sized arrays
can be created, and the values from the original array copied into the respective halves—or
the splitting can be conceptual—index ranges can be designated as marking the left and right
halves of the array.

2. For each of the left and right halves, recursively obtain the following information:

• The best buy time,

• The best sell time,

• The time when the price is at its minimum, and

• The time when the price is at its maximum.

3. Given this information for each half, choose the best overall buy/sell times from the three
following possibilities, one of which yields the greatest profit:

• The best buy/sell pair of times within the left half.

• The best buy/sell pair of times within the right half.

• The best buy/sell pair of times that bridge the halves. That is, the result of buying at the
time of the left half’s minimum, and selling at the time of the right half’s maximum.

4. Return the same quartet of information, listed above, to the caller.

Once you write such a method, test it, just as you did with the slower method. Add code to print
the array of prices, and then run the program with small but increasing numbers of milliseconds
(which you get to specify on the command line).

Once you have determined that your program is working correctly, then remove the debugging
code that prints the array of prices, and run the program on larger inputs. Begin with 250, 000
milliseconds, which was about the practical maximum for the slow solution:

$ java FastPickEm 250000

How long does this large a value of n now take? How large can you make n before the program
takes more than a few minutes? Bonus question: What is the Big-O number of operations that
this divide-and-conquor solutions requires?2

2This is truly a bonus question. It’s not all that easy to analyze this kind of thing until you take Data Structures
and then Algorithms. But hey, give it your best shot.

2



3 Submitting your work
Submit your FastPickEm.java file with the CS submission system, using one of the two
methods:

• Web-based: Visit the CS submission systems web page at:
www.cs.amherst.edu/submit

• Command-line based: Use the cssubmit command at your shell prompt. (WARNING:
This method works only on remus/romulus.)

This assignment is due on Thursday, Apr-11, 11:59 pm.

3

https://www.cs.amherst.edu/submit

	Making a fortune, take II
	What you must do
	A fast solution

	Submitting your work

