
INTRODUCTION TO COMPUTER SCIENCE I
PROJECT 2
Blackjack

1 The game
For this assignment, we will be writing a program to play (a somewhat limited version of) the game
of Blackjack (a.k.a., 21). Specifically, this version of the game will pit a single player (the user)
against the dealer (the machine). There will be no splitting, insurance, or surrendering. Here is a
description of our simplified version of Blackjack:

• In this game, each card has a value based on its rank (but not its suit). Specifically, cards of
rank 2 through 9 are worth their face value; cards 10 through King have a value of 10; the
Ace has a value of 11.1

• Before the first hand is dealt, the dealer will shuffle the deck. This deck will then be used for
repeated hands so long as at least 20 cards remain in the deck before dealing. When the deck
has too few cards remaining, a fresh deck will be shuffled before starting a new hand.

• The game should begin with the player granted $100 (virtual). At the beginning of each
hand, the player must place a wager of at least $1, and (of course) at most the amount that
the player has remaining.

• The hand begins with the dealing of two cards each to the dealer and player. For the player,
both cards are face up (the card’s suit and rank are shown); the dealer, however, gets one
card face up, the other face down (hidden).

• The player then plays out their hand, trying to get the cards in their hand as close to a
combined value of 21 as possible without going over. The player will be given repeated
opportunities to hit (take another card from the deck and add it to the hand) or to stay (leave
the hand as-is, thus ending the player’s turn). The value of the hand is the sum of the values
of the cards, as described supra. If the value is over 21, the player has busted, the hand ends
immediately (without the dealer playing out its own hand), and the player loses the wager.

• The dealer then plays out its hand by hitting until the value of its hand is at least 17.

1Remember that this is a simplified version of the game. Later, you can add a little complexity by allowing each
Ace to be worth 1 or 11, as it would be in a real game of Blackjack.

1

https://sfkaplan.people.amherst.edu/courses/2019/spring/COSC-111/
https://sfkaplan.people.amherst.edu/courses/2019/spring/COSC-111/assignments/project-2.pdf
https://en.wikipedia.org/wiki/Blackjack

• With both hands played out, the winner is determined as follows:

1. If the dealer has 21, the dealer wins (even if the player also has 21), taking the wager.

2. If the dealer has busted, then the player wins, being paid the value of the wager.2

3. If the dealer’s hand has a higher value than the player’s, then the dealer wins, taking
the wager.

4. If the player’s hand has a higher value than the dealer’s, then the player wins, being
paid the value of the wager.

5. If both player’s hands have the same value, then the hand is a push (no winner), return-
ing the wager to the player.

2 Your assignment
Getting started: Create a new folder/directory for project-2, and open/change into it. Then
go to the following link for the starting code:

bit.ly/COSC-111-project-2-source

You should save this file into your project-2 directory with the name Blackjack.java.
Then open the code into Emacs/Aquamacs. You will see the beginnings of a Blackjack program,
and your job is to complete the code such that it plays a game of Blackjack as described above. A
player should be allowed to play hands until they run out of (virtual) money or choose to end the
game.

2.1 On the representation of the cards
This game assumes a standard 52-card deck, where each card is defined by two characteristics:

1. A suit: One of spades, hearts, clubs, diamonds.

2. A rank: One of Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King.

In order to make a game that uses such a (virtual) deck of cards, we must choose some way to
represent each. For this assignment, we will assign a unique integer to represent each card—an
encoding. Specifically, each card will be uniquely represented by an integer between 0 and 51
(inclusive), like so:

2For example, if the player wagered $10, then the player would keep that wagered $10 and receive an additional
$10 from the dealer.

2

https://bit.ly/COSC-111-project-2-source
https://en.wikipedia.org/wiki/Standard_52-card_deck

Rank Suit Encoding
Ace Spades 0

2 Spades 1
3 Spades 2
...

...
...

Queen Spades 11
King Spades 12
Ace Hearts 13

2 Hearts 14
...

...
...

King Hearts 25
Ace Clubs 26

...
...

...
King Clubs 38
Ace Diamonds 39

...
...

...
King Diamonds 51

With this arrangement, the rank and suit can be determined by a little arithmetic based on the
number of cards in each suit, 13. Specifically, for a given card encoding . . .

suitNumber = encoding / 13
rankNumber = encoding % 13

. . . where . . .

suitNumber suit
0 Spades
1 Hearts
2 Clubs
3 Diamonds

rankNumber rank
0 Ace
1 2
2 3
...

...
9 10

10 Jack
11 Queen
12 King

In this way, you can represent the deck as an array of 52 int values. Making a new deck requires
only that you assign 0 to 51 into the array, thus representing one of each card.

3

2.2 On the shuffling of the deck
The task of shuffling an array—known mathematically as randomly permuting it—requires some
thought, and there are many possible approaches. First, we should define the problem clearly: A
permutation of an array is a re-ordering of the elements in that array. A random permutation of
an array of n elements is a random selection of the n! possible orderings. So, for a small-scale
example where n = 3, consider an array whose contents are:

position: 0 1 2
value: 8 2 5

There are 3! = 1× 2× 3 = 6 possible orderings of these elements:

position: 0 1 2
ordering 1: 2 5 8
ordering 2: 2 8 5
ordering 3: 5 2 8
ordering 4: 5 8 2
ordering 5: 8 2 5
ordering 6: 8 5 2

A good shuffling algorithm3 will generate each of these n! orderings with probability 1
n!

. An-
other way of stating this property is that, for a good shuffling algorithm, each element has an equal
probability (1

n
) of ending up in each of the n positions.

Your primary goal (for this part of the assignment) should be to devise a good shuffling algorithm
and write a method to perform it. Your secondary goal, if you have the time for such a thing, is to
make an efficient such algorithm that uses as little memory space and time as you can devise.

3 Submitting your work
Submit your Blackjack.java source code file with the CS submission system, using one of
the two methods:

• Web-based: Visit the CS submission systems web page at www.cs.amherst.edu/submit.

• Command-line based: Use the cssubmit command at your shell prompt.
(WARNING: This method works only on remus/romulus.)

This assignment is due on Thursday, Apr-04, 11:59 pm.

3We can later more sharply, quantitatively define goodness.

4

https://www.cs.amherst.edu/submit

	The game
	Your assignment
	On the representation of the cards
	On the shuffling of the deck

	Submitting your work

