Introduction to Computer Science I
Spring 2019
MID-TERM EXAM — SOLUTIONS

1. QUESTIONS: Provide short answers to each of the following questions:
(a) What does the compiler (javac) do?

(b) What is casting? When does automatic casting occur? When is forced casting
required?

(c) What three tasks does the new operator perform when creating a new array?
For example:

int[] x = new int[5];

(a) The compiler translations the human-readable source code (e.g., the .java
file) into a form that the machine can run (e.g., the .class file). The com-
piler also checks that operations and methods operate on the correct types of
data.

(b) Casting converts data of one type into another type. When casting a datum
can cause no loss of information (e.g., converting an int to a float), then
Java will do it automatically so that it can operate on like types. When the
cast may lose information (e.g., the digits after the decimal in converting a
float to an int), the cast must be forced by the programmer with an explicit
annotation.

(c) The new operation (a) creates space for the array, (b) initializes the values in
the array to 0, and (c) returns a pointer to the array.

NOTES: None.



2. QUESTION: What is the output of the following code?

int x = 5;

if (1 <=x) && (x <= 9)) {
X =X % 2;

}

if ((10 <= x) & (x <= 19)) {
x = x * 10;

} else if ((100 <= x) && (x <= 999)) {
x = x * 1000;

} else {
X = -X;

}

System.out.println(x);

100

NoTES: The key to this question is carefully tracking the use of else in connection
some of the conditions but not others. The first condition (x between 1 and 9) is
true, and thus changes x to be 10. That conditional statement is unconnected to
the remaining conditions, which are an if-then-else chain. Thus, exactly one of the
last three branches will be used. When the first of these (x between 10 and 19) is
true, then x is updated to 100, and the condition that follows (x between 100 and
999) is not tested because it follows an else from the previous condition.



3. QUESTION: What is the output when ArrayPass is run?

public class ArrayPass {
public static void main (String[] args) {
int[] q = new int[8];

int i = 0;

while (i < q.length) {
qlil = i * 1i;
i=1i+1;

}

i=05;

moose (i, q);
System.out.println(i);

print(q);
}
public static void moose (int i, int[] a) {
i=1i+1;
ali]l = alil / 2;
}
public static void print (int[] a) {
int i = 0;
while (i < a.length) {
System.out.println("[" + i + "] = " + al[i]);
i=1+1;
}
}
}
5
[0] =0
[1] =1
[2] =4
(31 =9
[4] = 16
[6] = 25
[6] = 18
[7] = 49



NoOTES: There are two essential observations here. First, although i changes in
moose (), that i is a local variable within that method, and is distinct from the
variable i declared in main(). Thus, the change to i within moose() does not
affect the value printed for i in main(), which is unchanged.

Second, and in contrast, main() passes its pointer q to the array, which moose ()
copies into its parameter a. And changes to the array made through a are going
to persist when moose() completes and returns to main(). Therefore, when the
array is printed by a call to print () from main(), the change made to entry 6 of
the array will appear.



4. QUESTION: Write a method named printRhombus that, when passed a size (in
this example, 5), prints the following rhombic pattern:

+4+++
+++++
+4++++
+++++
+++++

public static void printRhombus (int size) {
int row = O;
while (row < size) {
int space = 0;
while (space < row) {
System.out.print(’ ’);
space = space + 1;
}
int plus = 0;
while (plus < size) {
System.out.print(’+’);
plus = plus + 1;
}
System.out.println();
row = row + 1;

NoTES: This pattern is a straightforward variation of the patterns required in
Project-1.



5. QUESTION: Write a method named pairwiseSum that sums each pair of elements
from two arrays of int values. The method should store the results into a new
array that it returns. The method’s signature should be:

public static int[] pairwiseSum (int[] a, int[] b)

For example, here is the pairwise sum of the two arrays a and b:

a 9 0 2 13
b: -5 1 4 7 2
sum 4 4 9 15

Notice that this method should only produce a new array if both a and b have the
same length. If they do not, the method should return the special value, null.

public static int[] pairwiseSum (int[] a, int[] b) {
if (a.length != b.length) {
return null;
}
int[] ¢ = new int[a.length];
int i = O;
while (i < a.length) {
c[i] = ali] + bl[il;
i=1+1;
}

return c;

NoTES: It was not terribly important that everyone understanding the return null;
statement—we will soon discuss that in more depth. What mattered is that the
lengths of the arrays were tested to insure that they matched.

The primary focii of this question, though, was understanding: that a new array
needed to be created; that the arrays needed to be traversed (i.e., moved through,
in a loop, one position at a time) in lockstep, summing the values from a and b to
assign the corresponding value in c; and, that the pointer to the new array must
be returned.



