
Computer Systems
Project 4

Fancier allocators

1 Preparing for mark-sweep garbage collection
For this project and the next one, we will be working with a best fit allocator.1 It keeps a
doubly linked-list of free blocks; when an allocation is requested, it searches that list for the
closest fit. In the absence of an acceptable free block, it pointer-bumps to expand the heap.

Our goal is to prepare this allocator for use in a mark-sweep garbage collector. The collector
will use this allocator to create new blocks. It will traverse the heap to mark live blocks. It
will then need to sweep allocated blocks that are dead, freeing each one.

The key question here is: How will the GC find the allocated-and-dead blocks? We will
need to modify this allocator to support that operation.

2 Getting started
2.1 Creating the repository

1. Login to the server: Connect to the course server.

2. Login to GitLab: From your browser, login to
https://gitlab.amherst.edu

3. Start a new project: On the top toolbar of the GitLab window, click the little
drop-down menu marked by a plus-sign. Select New project. Set the Project name
to be sysproj-4, and leave the other default values. Click on the Create project
button at the bottom.

4. Clone the repository onto the course server:

$ git clone git@gitlab.amherst.edu:yourusername/sysproj-4.git
$ cd sysproj-4

5. Download the source code: After you download the files, use ls -l to list the
directory and see what you have.

$ wget -nv -i https://bit.ly/cosc-171-20F-p4
$ ls -l

1This choice of allocator is a change of plans. We had discussed using a segregated fits allocator, but I
wanted to keep the complexity of the project reasonable. I will provide the segregated fits allocator for the
adventurous, but we will focus our efforts on the best fit implementation.

1

https://sfkaplan.people.amherst.edu/courses/2020/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2020/fall/COSC-171/assignments/project-4.pdf
https://gitlab.amherst.edu


6. Add/commit/push the source code to the repository:

$ git add *
$ git commit -m "Starting code."
$ git push

2.2 Compiling and running
This collection of code works identically to the code from Project-3. To compile the pieces:

$ make clean
$ make libbf memtest

Then, to run memtest (or anything else) with your allocator code, and then turn off your
code:

$ export LD_PRELOAD=${PWD}/libbf.so
$ ./memtest
$ unset LD_PRELOAD

3 Your assignment
3.1 Part I: Commenting the code
Open bf-alloc.c. Its basic structure matches that of pb-alloc.c from the previous project.
There are some key differences, including the definition of the header_s, which now contains
additional fields for organizing each block.

Notice that malloc() and free() are devoid of comments. Comment these functions,
providing a guide to any reader of the code as to what is happening in each group of lines.
As before, you may collaborate freely with others in figuring out the code and writing these
comments.

3.2 Part II: Make it align
This allocator does not provide double-word aligned blocks in the way that it should. Port
your code from Project-3, making the blocks that are created by pointer-bumping be
properly aligned.

3.3 Part II: Create an allocated list
As written, objects are only even linked into the free list; that is, when an object is allocated,
it isn’t on a list at all.

2



So that a garbage collector may search the allocated blocks, looking for dead ones during
its sweep phase, you must create a linked list of allocated blocks. When a block is
allocated, add it to this list; when freed, remove it from this list before adding it to the free
list.

3.4 Part IV: Test your code
Modify the testing program, memtest, to do some allocations, deallocations, and reallo-
cations. Make sure that it still works properly with all of your code changes.

3.5 Totally optional challenge
Notice that your repository includes sf-alloc.c, a segregated fits allocator. Preparing this
allocator for use in a mark-sweep GC is different. It would require enhancing the headers, at
the top of each page, to provide per-block bitmaps to keep track of which blocks are allocated,
and, to support a heap traversal, which blocks are visited/live.

If you are interested in trying to add these things to this more complex allocator, let me
know, and we can discuss how that would be done.

4 How to submit your work
First, be sure that the most recent versions of your work are up-to-date on the GitLab server
by performing an add/commit/push with git. Then, go to GitLab with your browser, and
add me (sfkaplan) as a Developer to your repository.

This assignment is due on Sunday, Oct-04, 11:59 pm.

3


	Preparing for mark-sweep garbage collection
	Getting started
	Creating the repository
	Compiling and running

	Your assignment
	Part I: Commenting the code
	Part II: Make it align
	Part II: Create an allocated list
	Part IV: Test your code
	Totally optional challenge

	How to submit your work

