
Computer Systems
Project 5

A (simulated) garbage collector

1 Writing a mark-sweep garbage collector
C is not normally amenable to garbage collection. As a language, it does not maintain infor-
mation about how objects are laid out in the heap. Specifically, it provides no information
about where pointers are stored within arrays and objects, so there is no way to follow the
pointers in performing the reachability traversal (the depth first search of the heap).

For this assignment, we will fake it. We will have the ability to create structures that store
information about the objects we allocate on the garbage collected heap (henceforth, the GC
heap). A tester program can then create these layout information objects, and then allocate
them on the GC heap with that layout information attached.

From there, the tested can manually provide the GC the root set, and then call on the
collector to do its job. This hand-holding of the collector is not normal—it’s a simulation of
what a programming language runtime environment would do automatically in a language
designed for garbage collection.

Once the collector is invoked, though, the collection is real. It must traverse the GC heap,
marking each live block it encounters. It then must sweep the allocated objects, freeing any
that are not marked. That activity is the focus of your work on this project.

2 Getting started
2.1 Creating the repository

1. Login to the server via ssh.

2. Login to GitLab in your browser.

3. Start a new project: Set the Project name to be sysproj-5.

4. Clone the repository onto the course server:

$ git config --global user.name "Your Name"
$ git config --global user.email "yourusername@amherst.edu"
$ git clone git@gitlab.amherst.edu:yourusername/sysproj-5.git
$ cd sysproj-5

5. Download the source code:

$ wget -nv -i https://bit.ly/cosc-171-20F-p5
$ ls -l

1

https://sfkaplan.people.amherst.edu/courses/2020/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2020/fall/COSC-171/assignments/project-5.pdf


6. Add/commit/push the source code to the repository:

$ git add *
$ git commit -m "Starting code."
$ git push

2.2 Compiling and running
Compiling and running this code is simpler than for Project-3 and -4. Since the GC heap is
simulated, all of the code is compiled into a regular executable program, and you just run
it. So:

$ make clean gctest

Then, you run gctest itself, providing the simple information of a number of objects for
the tester to create before calling the collector:

$ ./gctest 10

3 Your assignment
All of your work will be in bf-gc.c, where you will write your garbage collector code on top
of your best fit allocator. You may also modify and enhance gctest.c, but more on that
below.

3.1 Part I: Port your core allocator functions
From your bf-alloc.c code from Project-4, copy-and-paste the your malloc() body into the
gc_malloc() function in bf-gc.c. Likewise, copy-and-paste your free() from bf-alloc.c
into gc_free() in bf-gc.c.

Be a little careful here. You likely defined things like static variables and #define macros
in bf-alloc.c. You will need to copy those over, too. Check your code for such small
adjustments, but overall, these functions should largely drop into place.

3.2 Part II: Write the collector functions
The gc() function simply calls on two functions: mark() and sweep(). You need to write
these two functions.

The mark() function should be an adaptation of the psuedocode from our lectures on
traversing the heap. That pseudocode was for a copying collector; here, there’s no copying
or pointer updating, just the marking of blocks that we reach. Therefore, the depth first
search stack is of pointers, and not of handles.

2



Notice that the root set is a linked-list implementation of a stack, and that there are pre-
made internal functions (rs_push() and rs_pop()) to use it. You should use this stack to
keep track of the pointers that need to be followed. When a collection starts, you should
assume that this stack already contains the root set of pointers.

Also notice that each block’s header now has a layout field. This pointer leads to a
gc_layout_s structure that provides information about how many pointers are in the block,
and where (relative to the base address of the block) to find them. You can thus find these
pointers and push each onto the search stack.

The sweep() function requires a linear traversal of the allocated list that you created for
Project-4. For each block on that list, either it is marked, in which case you can unmark
it (for the next collection), or it is not marked, in which case it is dead and must be freed
with gc_free().

3.3 Totally optional challenge
If you get the above to work and want to be adventurous, create a sf-gc.c source code
file based on your segregated fits allocator from Project-4. Adapt the changes for garbage
collection from the best-fit allocator to this allocator.

4 How to submit your work
First, be sure that the most recent versions of your work are up-to-date on the GitLab server
by performing an add/commit/push with git. Then, go to GitLab with your browser, and
add me (sfkaplan) as a Developer to your repository.

This assignment is due on Sunday, Oct-25, 11:59 pm.

3


	Writing a mark-sweep garbage collector
	Getting started
	Creating the repository
	Compiling and running

	Your assignment
	Part I: Port your core allocator functions
	Part II: Write the collector functions
	Totally optional challenge

	How to submit your work

