Introduction to Computer Science I1
Spring 2020
SAMPLE MID-TERM EXAM — SOLUTIONS

1. QUESTIONS: Provide short answers (a few sentences) to each of the following
questions:

(a) What is an abstract class?
(b) Why should instance variables never be declared public?

(¢) Consider some method foo() that calls another method bar(). Assume
that bar () may throw a ThisOrThatException, which is a checked' ex-
ception type. How must foo() be written to address this characteristic of
bar()?

(a) An abstract class defines a type of uninstantiable object that include at
least one abstract method—a method signature with no body.

(b) With private data members, only the methods of that class can access those
variables. Therefore, the methods have full control over what is stored in
those variables, how those variables are used and manipulated, and how the
information stored in those variables is represented and accessed through
public methods. Moreover, any bugs in the use of those variables must
exist only in the methods of the class, narrowing the potential for errors.

(¢) The calling method (here, foo()) must either catch the ThisOrThatException
as part of a try-catch block, or it must declare, in its signature, that
ThisOrThatException is automatically rethrown.

IThat is, not a subclass of RuntimeException.



DISCUSSIONS:

(a) Some simply defined basic inheritence, not seeming aware that any class
may be extended.? Be sure that you see the distinction. Any class may
be extended; an abstract class must be extended to become instantiable.

To that end, many people left out one critical element—either the unin-
stantiability, or the requirement of abstract methods. These were smaller
errors.

(b) There were a couple of types of confusion that typically arose. The first
was the erroneous belief that public data members would somehow con-
flict or be ambiguous when used across multiple objects of that type. Of
course, that’s not a problem since each object must be accessed via a spe-
cific pointer to it. The second was that private data members were a layer
of security against user manipulation. User’s interact with the program’s
user interface, not directly with the code and objects. These major mis-
understandings aside, most addressed at least some of the critical issues
described in the answer above, earning full credit.

(¢) The most common error here was to list only one of the two approaches to
addressing this problem. For example, many answers illustrated the use of
a try-catch block to catch the exception that bar () might throw, but then
did not mention the alternative possibility of having foo() automatically
rethrow the exception.

2It is possible to make a class uninheritable, so “any” is a bit of an exaggeration.

2



2. QuesTION: Consider the following doubly-recursive method:

public static void toZero (int n) {
if (n == 0) {
return;
}
System.out.println(n);
if (n > 0) {
toZero(n - 1);
toZero(-(n - 1));
} else if (n < 0) {
toZero(n + 1);
toZero(-(n + 1));

3

Write the output that this method would generate if it were called with an
argument of 4.



Discussion: This question is one for which, typically, the answer is either fully
correct or tragically wrong. Many not only answered this question correctly,
but also drew some helpfully clear recursive call trees.

Some indicated that the calls would produce no output. However, as I men-
tioned at the beginning of the exam, I would not ask a “trick question” like
that. Others did manage to find a middle-point between a fully correct answer
and one that was wholly incorrect. In such answers, a portion of the output
was present, often in the correct order, but with gaps in the sequence. I will
admit that I do not see clearly how such answers were reached. If you gave one,
be sure you know how this call sequence really works.



3. QUESTION: Consider Pascal’s Triangle, shown here in a usefully lopsided form:

\col | 0 1 2 3 4 5 6
row\ I

_______ e
0 | 1

1 | 1 1

2 | 1 2 1

3 | 1 3 3 1

4 | 1 4 6 4 1

5 | 1 5 10105 1
6 | 1 6 1520156 1

Specifically, we define the value of any position in the triangle at row r and
column c as:

T(r,c) = 1 ifec=0orc=r
Ol T(r—=1Le—-1)+T(r—1,¢) f0O<c<r

That is, the values at the edges (the left-column and right-most-diagonal) are
always 1, while the interior values are the sum of the values above-and-to-the-
left and immediately-above. Further consider the following method header:

public static int[][] pascal (int r)

Write this method such that it creates a two-dimensional matrix of integers
that are the first r rows of Pascal’s Triangle. Note that each row is one element
longer than the previous one, and so too should the second dimension arrays of
this matrix be.



private static int[][] pascal (int r) {

int[]J[] p = new int[r][];
for (dnt i = 0; i < r; i +=1) {

pli]l = new int[i+1];
for (int j = 0; j <=1; j += 1) {
if (=01 3==1){

plil[j] = 1;
} else {
plil [j] = pl[i-11[j-11 + pli-11[j];
X
X
+
return p;

DiscussioN: One aspect of this question was far and away the most prob-
lematic: the allocation of the rows of the array. A great majority of answers
performed a single allocation at the beginning, using an expression such as,
new int[r] [r], therefore creating a matrix of integers that was square. Yet
the last sentence of the question makes clear that each row should be allocated
such that each is one longer than the previous. Many people even asked me
about that issue during the exam. Few actually implemented it.

Otherwise, most successfully implemented the mathematical definition in code.
There were occassional off-by-one errors with the loops, or other minor gaffes.
Curiously, some noticed the recursive nature of the mathematical definition
given in the question, and then tried to write a recursive method to perform
the calculation. Most of these attempts did not work out, since filling a single
2D array structure through a recursive method can be tricky. As practice, try
it yourself, and see if you can do it correctly.



4. QUESTION: Consider the following partially-written class:

public class IntArray {
private int[] _storage;

public IntArray (int size) {
_storage = new int[size];

by

public int length () {
return _storage.length;

by

¥

Notice that this is a container class for int values. An IntArray must be
created to have a specific length (just like regular arrays). Moreover, indezing
into an IntArray is a bit different from normal arrays. Specifically, each entry
may be accessed via either of two indices:

(a) TIts forward index, which is that entry’s position counting forwards from
the beginning of the array, represented as a non-negative integer; or

(b) Its backward index, which is that entry’s position counting backwards from
the end of the array, represented as a negative integer.

In other words, for an array of length 4, the forward indices are 0, 1, 2, and 3;
the backward indices to those same 4 entries are respectively -4, -3, -2, and -1.
Complete this class by adding the following methods:

o A copy constructor.
o A deep equality comparison method.

o A setter that sets the entry at index i to the value v. Remember that
i may be either a foward or backward index. If i is invalid—too large in
magnitude for length—then this method should throw an
ArrayIndexOutOfBoundsException that contains the offending i.

o A getter that returns the value at index i. As with the setter, forward
and backward indices are allowed, and invalid indices should trigger the
appropriate exception.



public IntArray (IntArray other) {
_storage = new int[other._storage.length];
for (int 1 = 0; i1 < _storage.length; i += 1) {
_storage[i] = other._storagelil;

public void set (int index, int v) {
int i = translateIndex(index);
_storagel[i] = v;

public int get (int index) {
int i = translateIndex(index);
return _storagel[i];

private int translateIndex (int index) {
int i = index;
if (i <0) {

' _Storage.length + i;

1

+
if (1 <0) {
throw new ArrayIndexOutOfBoundsException(index);
+
return i;

public boolean equals (IntArray other) {
if (_storage.length != other._storage.length) {
return false;

}
for (int i = 0; i < _storage.length; i += 1) {
if (_storagel[i] != other. storagel[i]) {
return false;
}
}

return true;



DiscussioN: Perhaps the greatest limitation on the answers to this question
was time. Many of you simply didn’t have enough to complete all of the methods
in this question. That said, a number of common mistakes did occur.

First, given an acceptable negative (a.k.a., backward) index, most answers cal-
culated the correct non-negative index in the underlying storage. However,
given an invalid backward index (e.g., -10 for IntArray of length 5), the ex-
ception that would then be thrown would not contain the original index (-10),
but rather the result of translating the index to a forward one.

The copy constructor often had the strange problem of not being written as
a constructor at all—it was frequently written as a regular method named
something like copy(). Be sure that you know what a copy constructor is.
Likewise, some were confused by the description of a deep equality comparison
method. That was a request for an overriden equals() method, which exists
to do exactly that kind of deep comparison for equality.

Another common mistake, particularly for the copy constructor and for equals(),
was the passing and returning of int[]. The IntArray object contains an
int [] for storage, but these interior structures should not be passed or re-
turned. Copying does not involve merely duplicating the array itself without
creating a new IntArray object. In a similar vein, some copied or compared
arrays by comparing their pointers, rather than the contents of those arrays.
The latter, of course, is what makes the comparison deep (where as shallow
comparison just compares the pointers themselves).



