Introduction to Computer Science II
Spring 2020
SAMPLE MID-TERM EXAM

1. (20 points) Provide short answers (a few sentences) to each of the following
questions:

(a) What is an abstract class?
(b) Why should instance variables never be declared public?

(c) Consider some method foo() that calls another method bar(). Assume
that bar () may throw a ThisOrThatException, which is a checked' ex-
ception type. How must foo() be written to address this characteristic of
bar()?

2. (20 points) Consider the following doubly-recursive method:

public static void toZero (int n) {
if (n == 0) {
return;
}
System.out.println(n);
if (n > 0) {
toZero(n - 1);
toZero(-(n - 1));
} else if (n < 0) {
toZero(n + 1);
toZero(-(n + 1));

}

Write the output that this method would generate if it were called with an
argument of 4.

IThat is, not a subclass of RuntimeException.



3. (30 points) Consider Pascal’s Triangle, shown here in a usefully lopsided form:

row\ |

_______ S
0 | 1

1 | 1 1

2 | 1 2 1

3 | 1 3 3 1

4 | 1 4 6 4 1

5 | 1 5 10105 1
6 | 1 6 1520 156 1

Specifically, we define the value of any position in the triangle at row r and
column c as:

T(r,c) = 1 ifc=0orc=r
Ol Tr=Le—=1)+T(r—1,¢) ifO<c<r

That is, the values at the edges (the left-column and right-most-diagonal) are
always 1, while the interior values are the sum of the values above-and-to-the-
left and immediately-above. Further consider the following method header:

public static int[][] pascal (int r)

Write this method such that it creates a two-dimensional matrix of integers
that are the first r rows of Pascal’s Triangle. Note that each row is one element
longer than the previous one, and so too should the second dimension arrays of
this matrix be.



4. (30 points) Consider the following partially-written class:
public class IntArray {

private int[] _storage;

public IntArray (int size) {
_storage = new int[size];

}

public int length () {
return _storage.length;

3

b

Notice that this is a container class for int values. An IntArray must be
created to have a specific length (just like regular arrays). Moreover, indexing
into an IntArray is a bit different from normal arrays. Specifically, each entry
may be accessed via either of two indices:

(a) Its forward indez, which is that entry’s position counting forwards from
the beginning of the array, represented as a non-negative integer; or

(b) Its backward index, which is that entry’s position counting backwards from
the end of the array, represented as a negative integer.

In other words, for an array of length 4, the forward indices are 0, 1, 2, and 3;
the backward indices to those same 4 entries are respectively -4, -3, -2, and -1.
Complete this class by adding the following methods:

e A copy constructor.
e A deep equality comparison method.

e A setter that sets the entry at index i to the value v. Remember that i
may be either a foward or backward index. If i is invalid—too large in
magnitude for length—then this method should throw an
ArrayIndexOutOfBoundsException that contains the offending i.

e A getter that returns the value at index i. As with the setter, forward
and backward indices are allowed, and invalid indices should trigger the
appropriate exception.



