
Introduction to Computer Science II

Spring 2020

Sample mid-term exam

1. (20 points) Provide short answers (a few sentences) to each of the following
questions:

(a) What is an abstract class?

(b) Why should instance variables never be declared public?

(c) Consider some method foo() that calls another method bar(). Assume
that bar() may throw a ThisOrThatException, which is a checked1 ex-
ception type. How must foo() be written to address this characteristic of
bar()?

2. (20 points) Consider the following doubly-recursive method:

public static void toZero (int n) {

if (n == 0) {

return;

}

System.out.println(n);

if (n > 0) {

toZero(n - 1);

toZero(-(n - 1));

} else if (n < 0) {

toZero(n + 1);

toZero(-(n + 1));

}

}

Write the output that this method would generate if it were called with an
argument of 4.

1That is, not a subclass of RuntimeException.

1



3. (30 points) Consider Pascal’s Triangle, shown here in a usefully lopsided form:

\col | 0 1 2 3 4 5 6

row\ |

-------+---------------------

0 | 1

1 | 1 1

2 | 1 2 1

3 | 1 3 3 1

4 | 1 4 6 4 1

5 | 1 5 10 10 5 1

6 | 1 6 15 20 15 6 1

Specifically, we define the value of any position in the triangle at row r and
column c as:

T (r, c) =

{
1 if c = 0 or c = r
T (r − 1, c− 1) + T (r − 1, c) if 0 < c < r

That is, the values at the edges (the left-column and right-most-diagonal) are
always 1, while the interior values are the sum of the values above-and-to-the-
left and immediately-above. Further consider the following method header:

public static int[][] pascal (int r)

Write this method such that it creates a two-dimensional matrix of integers
that are the first r rows of Pascal’s Triangle. Note that each row is one element
longer than the previous one, and so too should the second dimension arrays of
this matrix be.

2



4. (30 points) Consider the following partially-written class:

public class IntArray {

private int[] _storage;

public IntArray (int size) {

_storage = new int[size];

}

public int length () {

return _storage.length;

}

}

Notice that this is a container class for int values. An IntArray must be
created to have a specific length (just like regular arrays). Moreover, indexing
into an IntArray is a bit different from normal arrays. Specifically, each entry
may be accessed via either of two indices:

(a) Its forward index, which is that entry’s position counting forwards from
the beginning of the array, represented as a non-negative integer; or

(b) Its backward index, which is that entry’s position counting backwards from
the end of the array, represented as a negative integer.

In other words, for an array of length 4, the forward indices are 0, 1, 2, and 3;
the backward indices to those same 4 entries are respectively -4, -3, -2, and -1.
Complete this class by adding the following methods:

• A copy constructor.

• A deep equality comparison method.

• A setter that sets the entry at index i to the value v. Remember that i

may be either a foward or backward index. If i is invalid—too large in
magnitude for length—then this method should throw an
ArrayIndexOutOfBoundsException that contains the offending i.

• A getter that returns the value at index i. As with the setter, forward
and backward indices are allowed, and invalid indices should trigger the
appropriate exception.

3


