
Networks
Project 1

Data link error detection
For this project, you will handle some bit-inversion errors introduced during transmission.

Specifically, we will simulate communications across different media, some of which introduce
different types of error. Your task will be to write a data link layer that detects whether
an error has occurred.

1 Getting the simulator
This project will require you to extend the capabilities of a simple point-to-point network
simulator that is written in Java. The simulator code comes as a directory of Java code; you
will need to compile and run that code from a command-line shell, providing arguments to
the simulator as you run it.1

To get started, download the simulator’s source code:

https://bit.ly/AMHCS-2020S-283-p1

You will obtain a zip archive with a number of source code files that, together, simulate
a partial network stack (using only the layers we’ve covered so far); this stack is created
for each of two hosts, connected by some (simulated) medium. You will be modifying this
program by adding new, inherited subclasses to the DataLinkLayer class.

2 The parts of the simulator
The simulator provides two media:

1. PerfectMedium: Connect two hosts with no errors ever introduced. The user specifies
Perfect at the command line to use this medium.

2. LowNoiseMedium: Connect two hosts with infrequent, uniformly distributed bit inver-
sions. The user specifies LowNoise at the command line to use this medium.

A physical layer object connects directly to a medium. There is only one type of physical
layer. It accepts a sequence of bytes which it then sends, one bit at a time, across the
medium. The receiving physical layer reconstructs the bytes, one at a time, delivering each
complete byte to its data link layer.

1I am assuming that you have, or can install for yourself, the Java 8 JDK and a programming editor or
IDE such as Sublime Text, IntelliJ, Eclipse, etc. If you don’t have these things and don’t know how to install
them, contact me.

1

https://sfkaplan.people.amherst.edu/courses/2020/spring/COSC-283/
https://sfkaplan.people.amherst.edu/courses/2020/spring/COSC-283/assignments/project-1.pdf
https://bit.ly/AMHCS-2020S-283-p1


Currently, there is one implemented data link layer:

• DumbDataLinkLayer: This particular data link layer uses start/stop tags and byte
packing2 to frame any data that its network layer asks it to send. It creates a single
frame for any sequence of requested bytes, no matter the length, and most critically,
it performs no error management. To use this data link layer, the user specifies Dumb
at the command line.

There is also a Host, of which there is only one type, that is the client of a data link layer.
It drives the data link layer to send or receive messages.

The whole thing is driven by the Simulator, which creates two (simulated) hosts and their
respective data link and physical layers, which it then connects to the (simulated) medium.
It then triggers one host to send a message to the other, printing the outcome.

3 Running the simulator
After obtaining the code, you should be able to compile and run it. The simulator reads a
file to determine what data to send, so you should create a text file with a small message
in it. (For example, create a file named message.txt, with that file containing some short
message to send.)

Once you have a message file to be transmitted, you must specify, on the command line,
which Medium subclass and which DataLinkLayer subclass to use. You do so by providing
the leading portion of the name of the subclass on the command line. For example, if you
want to use the DumbDataLinkLayer with the PerfectMedium, you invoke the simulator like
so:

$ java Simulator Perfect Dumb message.txt

The simulator will read the message file, pass it to one host to be sent, and then query the
receiving host for what it received. It will then print the received data. If you try using the
LowNoiseMedium to introduce some errors, you will see some characters get corrupted (and,
perhaps, see the whole frame broken by the corruption of the start or stop tags.

2That is, byte-based escape codes for data that happens to match tag values.

2



4 Writing new data link layers
Your assignment: You must create two new data link layers that are subclasses of
the abstract DataLinkLayer class:

1. ParityDataLinkLayer: Use a single, simple parity bit to detect one-bit errors on each
frame.

2. CRCDataLinkLayer: Use the CRC checksum method to detect errors on each frame.3

For each of these implementations, when an error is detected, print an error message, show
the (incorrect) data, and do not provide the data to the receiving host.

Both of your layers must divide each message into smaller frames (unlike DumbDataLinkLayer).
Specifically, each frame should contain no more than 8 bytes of data each. Be sure to
test your code with longer messages to be sure that the data is being divided correctly.

How to add a new data link layer to the simulator: To add a new data link
layer, simply copy the source code of one of the existing data link layer subclasses (e.g.,
DumbDataLinkLayer.java) into a new file of your own (say, ParityDataLinkLayer.java).
Edit the file and rename the class, and then change the methods so that it detects/corrects
errors differently.

Note that you do not need to change Simulator.java or any of the other existing
classes for the simulator to recognize your new data link layer. You are welcome
to look inside Simulator.java, as well as the create() method in DataLinkLayer.java
itself, which uses the command line input to form the names of subclasses, and then applies
reflection to create objects of those classes. Thus, so long as your subclasses have the right
kind of name (e.g., the names of data link layer subclasses end with DataLinkLayer), then
the existing code will use them just as they do the provided classes.

5 How to submit your work
Submit your ParityDataLinkLayer.java and CRCDataLinkLayer.java source code files
via the CS submission system:

https://www.cs.amherst.edu/submit

This assignment is due on Sunday, Feb-23, 11:59 pm.

3Consult the text to select a good generator polynomial to drive your CRC. I will be testing your code
by introducing a number of kinds of errors with media of my own making.

3

https://www.cs.amherst.edu/submit

	Getting the simulator
	The parts of the simulator
	Running the simulator
	Writing new data link layers
	How to submit your work

