NETWORKS
PROJECT 2
Flow control

This assignment is an extension of Project 1, but the code has undergone enough transfor-
mation that your solutions to that project won’t be something that you want to copy-and-
paste. Instead, you will be given an existing ParityDatalLinkLayer from which to work,
and to which you need to add flow control capabilities.

1 The simulator

Getting it: The code from which you are working is similar to the previous code from
Project-1, but it’s different enough that it will require some time to get acclimated.
To get started, download the simulator’s source code:

https://bit.1ly/AMHCS-20205-283-p2

What changed: The general layout of classes is unchanged, and the Medium abstract class
and its descendents are unchanged. However, nearly everything else is altered. Some of the
changes you need to see and understand in order to know how to test and debug your code,
but you will not need to alter what you see. Mostly, you will need to fill in a number of
abstract methods in your data link layer in order to make flow control happen.

The changes to Simulator, Host, and PhysicalLayer are all to drive each host as its
own thread of execution, running independently of any other host and of the simulator itself.
Data is now buffered in the data link layer when provided by both the host (for sending)
and the physical layer (for receiving). The buffered data coming into the data link layer isn’t
processed until an event loop in the thread sees a non-empty buffer and calls a method to
process it. That is, most of what you need to grasp is in DataLinkLayer and its subclass,
ParityDatalinkLayer.

Here are the methods to which you must pay the most attention:

e go(): This is the event loop method. Once it is called, it loops forever (or until the
stop() method is called as the simulator ends), looking for data it needs to send,
received data it needs to process, or timeout events. It triggers all of the code you will
be writing.

o sendNextFrame(): Called by the event loop when the sendBuffer is not empty. It
grabs up to a frame worth of bytes, and then:

1. Calls createFrame () to generate the frame needed to transmit that data.

2. Calls transmit () on the framed data.

o createFrame(): The roll of this method is largely unchanged. It is where you will
need to add code for frame numbers, etc.


https://sfkaplan.people.amherst.edu/courses/2020/spring/COSC-283/
https://sfkaplan.people.amherst.edu/courses/2020/spring/COSC-283/assignments/project-2.pdf
https://sfkaplan.people.amherst.edu/courses/2020/spring/COSC-283/assignments/project-1.pdf
https://bit.ly/AMHCS-2020S-283-p2

o finishFrameSend(): After a frame is actually sent, it is passed to this method (defined
in ParityDataLinkLayer) so that it can manage the flow control of it. This method
can buffer the frame, and record that the layer is now waiting for an acknowlegement
of the frame. It may also record the time so that it can later determine if a timeout
needs to occur.

o receive(): As before, it accumulates bits received by its physical layer. These are
now queued in receiveBuffer.

o processFrame(): Called by the event loop when receiveBuffer is not empty. As
before, it returns null when it cannot find a complete frame. If it does find a frame,
it must remove the tags and metadata from it, check it for errors, and then return the
extracted data if all correct.

o finishFrameReceive(): This method is called whenever a complete frame is received.
It is responsible for delivering the data to the client Host, and should then perform
the task of sending an acknowledgment to the receiver.

e checkTimeout (): This method must be defined to check whether too much time has
passed since a frame was sent, thus triggering a re-send.
2 Implementing Stop-And-Wait

Your assignment: Within the structure described above, implement positive acknowledg-
ment with retransmission (a.k.a., stop-and-wait) flow control within the data link layer. I rec-
ommend copying the provided ParityDataLinkLayer to a new subclass, PARDataLinkLayer,
and build on the provided code as a skeleton.

Extra challenge: Implement sliding windows. 1 recommend using a window size of 1
frame on the receiver, implementing a simpler go-back n form of this protocol.

3 How to submit your work
Submit your PARDataLinkLayer . java (and if you have one, SlidingWindowsDataLinkLayer. java)

source code files via the CS submission system:

https://www.cs.amherst.edu/submit

This assignment is due on Tuesday, Mar-24, 11:59 pm.


https://www.cs.amherst.edu/submit

	The simulator
	Implementing Stop-And-Wait
	How to submit your work

