$\underset{\text { Introduction to Computer Architecture }}{\text { A 4-bit incrementor }}$ LaB 2

For this week, we will perform a slightly different kind of arithmetic operation-similar to the addition we have discussed during lectures, but a bit specialized and thus simplified. This one will later be used, in Lab 3^{1}, to build a fundamentally different kind of circuit. Until then, though, this circuit has a simple definition ...

1 An incrementor

Specifically, you will design and implement a 4-bit binary incrementor. There are 16 possible integers that can be formed with 4 bits, from 0 to 15 (or, in binary, from 0000 to 1111). Given that the incrementor should add 1 to each of these possible input values, we can make a table that shows each possible input value and its corresponding output value:

(original) input value	(incremented) output value
0	1
1	2
2	3
3	4
4	5
5	6
6	7
7	8
8	9
9	10
10	11
11	12
12	13
13	14
14	15
15	0

Notice that when the input is at its maximum possible value (15), the output "wraps around" to the minimum possible value (0).

[^0]
2 A suggested approach

Here is a set of suggested steps that may help you both solve this problem and implement your solution as a circuit:

1. Determine the output functions: The output of your circuit should be a 4 -bit number. Therefore, you have four output bits, each of whose value is determined by some Boolean logic function composed of the four inputs. Write out a truth table for the four input bits and their corresponding output bits, and then use the table to write the four output functions in disjunctive normal form.
2. Simplify the output functions: The output functions determined in the previous step are helpful, but likely more complex than necessary. Use Boolean algebraic transformations to simplify those functions.
3. Draw the circuit: Draw a circuit that computes the four simplified output functions that you developed in the previous step. You may have to draw the circuit a few times to come up with a clean layout that is easy to read.
4. Build the circuit: Use the switches, LEDs, chips, and wires to implement the circuit you've drawn. Be sure to leave time for debugging!

3 Submitting your work

Submitting your completed work: For this lab, demonstrate your working incrementor on every possible input value:

1. Take a video: Caputure a video of your incrementor on all sixteen possible input patterns. Move through the inputs in order, clearly showing the setting of the input switches and the outputs shown on the LED's for each possible input combination.
2. Share the video: Upload your video to your college Google Drive account. Then, share the video with me: sfkaplan@amherst.edu

This assignment is due Thursday, Sep-16, 11:59 pm.

[^0]: ${ }^{1}$ Don't click on the link right away-Lab 3 won't be available until next week.

