
Computer Systems
Project 7

Implenting page swapping

1 Getting started
Begin by getting the repository and code set up…

1. Login to the server via ssh.

2. Login to GitLab in your browser.

3. Start a new project: Set the Project name to be sysproj-7.

4. Clone the repository onto the course server:

$ git config --global user.name "Your Name"
$ git config --global user.email "yourusername@amherst.edu"
$ git clone git@gitlab.amherst.edu:yourusername/sysproj-7.git
$ cd sysproj-7

5. Download the source code:

$ wget -nv -i https://bit.ly/cosc-171-21f-p7
$ ls -l

6. Add/commit/push the source code to the repository:

$ git add *
$ git commit -m "Starting code."
$ git push

2 Looking inside vmsim
For this project, you will be working within vmsim. I have provided all of its code (modified
somewhat from the previous project), including my own MMU implementation. Your work
will all be within vmsim.c, modifying to do new things.

The most immediate change is the presence of the bs.c and bs.h files, which implement a
simulated backing store—a disk-like larger storage that allows you to read and write whole
blocks (each conveniently 4 KB).

Additionally, you can now look inside vmsim.c to see how it works. Of paritcular interest
is the function vmsim_map_fault(), since it is responsible for handling MMU translations
that fail. You should also notice, in mmu.c, that the MMU now does two new, important
things:

1

https://sfkaplan.people.amherst.edu/courses/2021/fall/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2021/fall/COSC-171/assignments/project-7.pdf


1. Test the resident bit: Each page table entry uses the bit in position 0 to indicate
whether that simulated page is mapped to an honest to goodness real page that is
available and ready for use. If this bit is 0, the translation fails.

2. Set the referenced and dirty bits: When a translation succeeds, the bit at position
1 is set (to 1), indicated that this simulated page has been referenced. If the reference
is a write operation, then the bit at position 2 is set (to 1), marking the simulated
page as dirty.1

There are likely other features that you will want to take in, including a number of #define
macros that I’ve used for manipulating bits, various helpful constants, etc. Get your head
wrapped around the code.

3 Creating a page swapping mechanism
Notice that the new backing store device is not initially used by the provided code. This
code will compile and run, but the real memory is small.2 Any program that uses 1 MB or
more will fail.

Your task is to make use of the backing store device to swap pages to and from real
memory. Each time you do, the page tables must be updated to reflect the change. Simulated
pages backed by real memory should have their resident bit set and their translations should
succeed; those not backed by real memory, and held only in the backing store, should have
this bit cleared so that translations fail. The vmsim_map_fault() function must identify
attempted uses of pages on the backing store and initiate a page swap. How you choose
to approximate the least recently used policy in order to select a page in real memory for
replacement is up to you.

4 How to submit your work
First, be sure that the most recent versions of your work are up-to-date on the GitLab server
by performing an add/commit/push with git. Then, go to GitLab with your browser, and
add me (sfkaplan) as a Developer to your repository.

This assignment is due on Monday, Nov-29, 11:59 pm.

1Notice, also, that mmu_translate() now has a second parameter that indicates whether the memory
reference is a read or write operation.

2Of the 5 MB in the default real memory size, the first 4 MB + 4 KB are reserved for the page table;
slightly less than 1 MB is available for backing simulated pages.

2


	Getting started
	Looking inside vmsim
	Creating a page swapping mechanism
	How to submit your work

