
COSC-211: Data Structures
HW3: Code testing

Due Sunday, Mar-14, 11:59 pm EDT

1 Code testing AmhList implementations
The AmhList interface is a simplified version of the standard Java List interface—one that
nicely matches the basic List ADT.

Given implementations of that interface, how should you test whether they are correct?
For this assignment, you will be given two broken implementations of AmhList. That is,
they are whole, but they each have bugs. How do you find them?

You will also be given a test generator program, and a tester program. The former creates
a sequence of List operations, randomly selected. These sequences are regular text files that
you can, if you like, edit by hand.

The latter consumes that sequence, applying each operation to both a reference list im-
plementation—a wrapper of the standard Java LinkedList class, which we assume to be
correct—and a test list implementation, which is the class you are hoping to debug. It
compares the results of each such operation, catching and outputting warnings on any mis-
matches between the behavior of the reference and test lists. As it runs, the tester can also
display step-by-step information about the content of the lists.

With these tools, your goal will be to find and fix the bugs in these AmhList implemen-
tations. Of course, the real goal will be for you to get familiar with this kind of structured
testing code and how to use it to track down subtle bugs.

2 Getting started
Create a new directory/project for yourself, and download the following ZIP archive:

bit.ly/cosc-211-21s-hw3

Extract/copy the files in this archive into your new directory/project. You will find the
following files:

• AmhList.java

The interface that matches the standard List ADT.

• ListGenerator.java

1

https://sfkaplan.people.amherst.edu/courses/2021/spring/COSC-211/
https://sfkaplan.people.amherst.edu/courses/2021/spring/COSC-211/assignments/hw3.pdf
https://bit.ly/cosc-211-21s-hw3


The program that creates a sequence of pseudo-randomly chosen List operations, along
with random (but reasonable!) indices and values, as appropriate.

• ListTester.java

The program that reads in a sequence of List operations and then applies them to both
a reference list and a test list, comparing that the results from both are identical.

• WrapperList.java

A wrapper around the standard Java LinkedList class, making it conform to the
AmhList interface. This class serves as our reference standard that we assume to
function correctly.

• AmhArrayList.java

An array-based implementation of AmhList. It automatically doubles the array size
when additional storage is needed. This class contains bugs.

• AmhLinkedList.java

A linked-list-based implementation of AmhList. This class contains bugs.

Using the generator: In order to generate a sequence, you run it like so:1

$ java ListGenerator 100 42 sequence.txt

This command will run the generator program, asking it to create a list of 100 operations,
using the arbitrary integer 42 as the psuedorandom number generator seed, and emitting the
results into a file named sequence.txt. You can, of course, choose different values here to
generate shorter or longer sequence, using different random seeds, and storing the results
into files of whatever names you choose.

You should open sequence.txt (or whatever you chose to name it) and see the format of
the operations generated by this program.

Using the tester: Once you have a sequence, you can test it like this:

$ java ListTester AmhArrayList sequence.txt

Here, you are asking it to read the sequence of operations from sequence.txt, and to
apply those operations to an instance of the AmhArrayList class, as well as to an insance

1We assume, here, the ability to use command-line arguments. If you run Java from within an IDE, you
may need to find how to pass these arguments within that environment.

2



of our reference class, WrapperList.java. As it runs, it will display copies of the list af-
ter each operation for your visual inspection, detecting any discrepencies. (See the method
ListTester.compare() to see how that information is produced. You can comment out the
call to this method in ListTester.go() if you want to see less output.

Additionally, if any operations cause the test and reference lists to produce different be-
haviors, the tester program will emit information about that difference.

3 Your assignment
Use the generator and tester to find the bugs in AmhArrayList and AmhLinkedList. Notice
that not all of the bugs are ones that will manifest directly! That is, the failures that these
classes will display, when tested, may reveal only indirectly the true cause of the error.

You should expect to add debugging output to these list classes, allow you to hone in
on the true bugs. Use the repeatability of testing infrastructure to show yourself what is
happening within the list code, and then reason about how to fix it!

Important note: Once you have found the bugs and corrected them, you should
remove your debugging output. Always submit code that is ready to be used; don’t
leave it looking or functioning like a work in progress.

4 How to submit your work
Go to GradeScope for our course, where you can submit your work. It will be auto-tested,
and you will see whether it compiles and runs successfully. Again, if the run fails, it won’t tell
you why; you need to go back and do more testing yourself. You may submit early and often!

Notice that you should only submit AmhArrayList.java and AmhLinkedList.java.
The tester code should not be submitted; it exists only to help you debug the code that you
are submitting.

This assignment is due on Sunday, Mar-14, 11:59 pm EST.

3

https://www.gradescope.com/courses/242978

	Code testing AmhList implementations
	Getting started
	Your assignment
	How to submit your work

