
COSC-211: DATA STRUCTURES

HW5: BINARY SEARCH TREES

Due Thursday, April 1, 11:59pm

Reminder regarding intellectual responsibility: This is an individual assignment, and the work
you submit should be your own. Do not look at anyone else’s code, and do not show anyone your
code (except for me and the course TAs).

1 Getting Started
Create a new directory/project for yourself, and download the following ZIP archive:

http://bit.ly/cosc-211-21s-hw5

Extract/copy the files in this archive into your new directory/project. You will find the following
files:

• Dictionary.java
The interface that matches our Dictionary ADT.

• sampletext.txt
A text file, for use in the second part of the assignment.

You’ll notice that we’ve given you much less starter code than usual, for this assignment. That’s
because we want to give you practice implementing a binary search tree from start to finish. You’ll
find lots of information below about how to name your classes and methods; it’s very important to
follow these naming rules exactly!

2 The Assignment

2.1 Binary Search Tree Implementation
In this assignment, you will write a binary search tree from scratch. Your tree be generic, and store
keys of type K and values of type V, where K must extend Comparable (thus allowing you to use
the compareTo method to determine which of two keys is larger).

Your tree should be in a class called BinarySearchTree.java (exactly like that, capitaliza-
tion and all). The class declaration should look like:
public class BinarySearchTree<K extends Comparable<K>,V>.
In your BinarySearchTree class, you should include the following methods:

1. A method called add that takes a K key and an V value as input and inserts the <key,
value> pair into the appropriate position in your tree. If key already appears in the tree,
the method should replace the existing value with the new value, and return the old value.

1

http://bit.ly/cosc-211-21s-hw5


If key was not already in tree, this method should return null. (Notice that this is a little
different from the version of add that we discussed in class; our in-class version refused
to add a <key,value> pair if the key was already present, whereas this version should
replace the old value with the new value.)

2. A method called remove that takes a K key as input and removes the associated <key,
value> pair from the tree. The method should return the value if it successfully removed
key from the tree, and it should return null if it did not remove key from the tree (i.e., if
key was not in the tree).

3. A method called lookup that takes a K key as input and determines whether key appears
in the tree. The method should return the associated value if the tree contains key and
null otherwise.

4. A method called inOrderTraverse that, when called on the root, prints all <key,
value> pairs in the tree in increasing order, with each pair appearing on a new line in
the format (key, value). This method should have no input parameters and should not
return anything.

Your methods must have exactly the names, input parameters, and return types specified above.

You might decide that you want to write additional methods, include fields, write additional classes
(for example, you will want to write a Node class), or any other number of things. This is all fine,
provided that the four methods specified above do what they are supposed to do. Any methods or
fields that you add to the BinarySearchTree class should be private.

As usual, you should test your BinarySearchTree thoroughly before submitting it. Write
yourself some test code, modeled after the tester from HW3. For your reference implementation,
any class that implements Java’s Map interface is a good choice (for example, TreeMap). You
can write yourself a wrapper class for TreeMap, as we’ve done in the past for other reference
implementations.

2.2 Word Counts
An interesting use for a dictionary is to count the number of occurrences of each word in a text
document. The idea is that a key represents a word, and its associated value is the number of times
the word appears in the document.

Your goal in this section is to write a program, called WordCount.java, that will perform this
task. Specifically, you will read through a text document, one word at a time. You should convert
each word to lowercase (so that, for example, “Hello” and “hello” are counted as the same word).
The toLowerCase() method in the String class can help you with this. You should also
remove any non-alphabetical characters from the word, so that punctuation is not included as part
of the word. If your string is stored in variable word, you can do the punctuation removal with the
line:

word = word.replaceAll("[ˆa-zA-Z]","");

2



This says to take all characters that are not in the range a-z or A-Z and replace them with the
empty string, "".

Once you’ve removed non-alphabetical characters and converted the word to lowercase, add it to
the dictionary. If the word is not yet in your dictionary, add a new <key, value> pair. If the
word already appears in your dictionary, update its associated word count value accordingly.

Your program should print out a list of all words that appear in the text file you read, in alphabetical
order, with their word count.

The HW downloads include a text file that contains the entire text of the novel “Pride and Prej-
udice,” by Jane Austen. You can find lots of other text files to play with at Project Gutenberg
(https://www.gutenberg.org/) (be sure to use the ASCII text format, not the UTF-8 text format).

3 Submit your work
Submit your work via Gradescope. You should submit your BinarySearchTree.java,
WordCount.java, and any other supporting classes you’ve written that are needed for your
BinarySearchTree and WordCount to run (e.g., Node.java). Do not submit your test
code.

A note about the autograder: the autograder will assume that you’ve submitted both a
BinarySearchTree.java and a WordCount.java. However, we highly recommend that
you run your BinarySearchTree through the autograder to check if it passes our (extremely
basic) compile-and-run test before you move on to writing your WordCount. If you submit your
complete BinarySearchTree.java along with a WordCount.java that just contains an
empty main method, this should pass our autograder tests.

This assignment is due on Thursday, April 1, 11:59pm.

3

https://www.gutenberg.org/

	Getting Started
	The Assignment
	Binary Search Tree Implementation
	Word Counts

	Submit your work

