COSC-211: DATA STRUCTURES
HW6: HASH TABLES
Due Thursday, Apr-08, 11:59 pm EDT

1 Implementing a simple hash set

Our goal for this assignment is to implement a hash table that stores and retrieves unique
keys. In keeping with Java nomenclature, we will refer to this implemented structure as a
hash set, distiguishing it from the key-value storage of a hash map.

The interface: We will be implementing the AmhHashSet<E> interface, which must im-
plement the following methods:

2

public boolean insert (E key)
If it is not already present, add key to the set. Return whether key was added.

public boolean lookup (E key)
Return whether key is present in the set.

public boolean remove (E key)
If present, remove key from the set. Return whether key was removed.

public int size ()
Return the number of keys in the set.

public int getNumberCollisions ()
Return E]the number of collisions that have occurred so far while inserting values into
the set.

Getting started

Get started by creating yourself a directory for this project and grab some source code:

bit.ly/cosc-211-21s-hw6

Unzip the code, and you will see the following files:

e AmhHashSet.java

The interface that defines the interface given above.

!This is not a standard part of a hash set or hash table interface. It’s something we’re using for our

assignment.


https://sfkaplan.people.amherst.edu/courses/2021/spring/COSC-211/
https://sfkaplan.people.amherst.edu/courses/2021/spring/COSC-211/assignments/hw6.pdf
https://bit.ly/cosc-211-21s-hw6

e WrapperList.java
A wrapper around the standard Java HashSet class, making it conform to the AmhHashSet
interface. This class serves as our reference standard that we assume to function cor-
rectly.

e ChainedHashSet. java
A skeleton class that you will complete. This class should implement a hash table
with chaining to store its values, thus implementing the AmhHashSet interface.

e HTGenerator.java
The program that creates a sequence of pseudo-randomly chosen hash set operations,
along with random (but reasonable!) values. This generator also emits what the
correct result for each operation should be.

e HTTester. java
The program that reads in a sequence of hash set operations and then applies them to
a ChainedHashSet, comparing the results from that object to the correct results read
in with each record.

2.1 Your hash set

Your assignment, in short, is to implement ChainedHashSet. Add whatever data members
and supporting methods you need to store the requested values in your hash table? You
are encouraged to use the standard Java LinkedList class to implement the chains at every
entry.

About hash functions: The Object class, at the very top of the class hierarchy, defines
the hashCode() method. Thus, every Java object, regardless of type, has this method.
However, this method doesn’t generate a good hash for every type; indeed, for the Integer
class (which we will use in this assignment), the hashCode () method returns the int value
itself. That is, the hash function is: h(x) = x. This is a trivial hash function, but combined
with a modulus operation, it will still allow you to implement a hash table with a mediocre
spread of values. Feel free to implement just about any kind of better hash function, but
don’t spent too much time on it.

2.2 The tester

HTTester. java is used to test AmhHashSet. Specifically, it reads a list of insert, lookup,
and remove operations, along with their expected outcomes. It then compares the expected
outcome with the one produced by an AmhHashSet, and shows the result. In the end, it
shows the number of collisions that the AmhHashSet reported.

2Tt should go without saying, and yet I will say it: You must implement your own hash table within an
array that your code manages. Using pre-existing hash table/set/map classes is not allowed.



The list of operations and expected outcomes looks like this:

lookup 3 false
insert 5 true
insert 5 false
lookup 5 true
remove 17 false
remove 5 true
lookup 5 false

If you put a list of operations like this into a file (e.g., simeple-test.txt), then you can
run HTTester like so:

$ java HTTester
USAGE: java HTTester <storage size> <input pathname> <output pathname>

$ java HTTester 10 simple-test.txt simple-test.log
If you then open simple-test.log, you will see something like this:

false : match
true : match
false : match
lookup true : match

lookup >
>
>
>
remove 17 -> false : match
>
>
0

3
insert 5 -
insert 5

5

remove true : match
lookup false : match

Total collisions =

2.3 The test generator

You can write and modify such test files by hand, putting your code through its debugging
cases to find simple problems. Ultimately, though, you should test your code on a larger,
automated input. HTGenerator will create a random test sequence like the one above:

$ java HTGenerator
USAGE: java HTGenerator <range> <test length> <output pathname>

$ java HTGenerator 20 15 simple-test.txt
The result, in simple-test.txt, looks like this:

remove 8 false
insert 11 true
insert 6 true
remove 11 true



insert 9 true
lookup 5 false
remove 6 true
insert 18 true
insert 8 true
remove 18 true
remove 8 true
insert 19 true
remove 19 true
insert 13 true
remove 9 true

Of course, a test case of values from 1 to 20, with a total of 15 operations, is not large.
Generating a larger one is desirable once your code handles the smaller one well:

$ java HTGenerator 1000000 25000 big-test.txt

The file big-test.txt (which you can open your text editor) will be 25,000 lines long,
and use keys from 1 to 1,000,000. If you then run this through HTTester...

$ java HTTester 10000 big-test.txt big-test.log

..the big-test.txt file will be processed using a 10,000 entry array, and its results dumped
into big-test.log. You can open this latter file in a text editor to examine it. You can
search for the string MISMATCH to find any errors. You can also examine the last line, which
reports the number of collisions that your hash table incurred during the run.

Test your code until you're convinced that it’s working correctly. Run it with different
array sizes and see how the collision numbers change.
3 How to submit your work

Go to GradeScope for our course, where you can submit your work. It will be auto-tested,
and you will see whether it compiles and runs successfully. Again, if the run fails, it won’t tell
you why; you need to go back and do more testing yourself. You may submit early and often!

Notice that you should only submit ChainedHashSet. java.

This assignment is due on Thursday, Apr-08, 11:59 pm EDT


https://www.gradescope.com/courses/242978

	Implementing a simple hash set
	Getting started
	Your hash set
	The tester
	The test generator

	How to submit your work

