Data Structures
Spring 2021
MIDTERM 1 — SOLUTIONS

1 Asymptotic Analysis

QUESTION: (a) [5 pts] Rank the following functions in order from lowest to highest
big-O complexity (you do not need to show any work or any formal proofs):

6n + 1700 5001gn 3" 0.2n' — 75n8

1. 5001gn
2. 6n 4+ 1700
3. 0.2n'® — 75n8

4. 3"

CoMMENTS: This went fine for most people. The most common error was flipping
the order of 0.2n'®> — 75n% and 3"; the important thing to be aware of here is that a
function with an n in an exponent will always grow faster than a function that’s a
polynomial in n.

QUESTION: (b) [10 pts| Let f(n) = 4n* — 2n + 7. What is the big-O class of f(n)?
You should give the smallest class possible. Use the definition of big-O to show that
f(n) is in the big-O class that you specified.
We consider g(n) = n*:
0 <4n?>—-2n+7
<4dn?+2n+7
< 4An? + 2n?% 4+ Tn?
= 13n?

For nyg > 1 and ¢ = 13, we establish that f(n) € O(n?).

COMMENTS: The most common error was that many people chose an ng and plugged
in that specific value to show that the desired inequality holds for the chosen ng. This
is not quite enough, because the definition of big-O states that the inequality must
hold for all values of n > ny.

2 Binary Search Trees
QUESTION: (a) [9 pts| For each of the following structures:

1. State whether or not it is a binary search tree, and

2. If not, state what is wrong with it.

(i)

(i) No. The node 15 has three children, which is one too many.

(ii) Yes.

(iii) No. The left children do not have lesser values than their parents.
COMMENTS: Not too many errors here.

QUESTION: (b) [6 pts| Here is a binary search tree:

Show how this BST changes as the following operations are performed in sequence:
add (1), add(25), add(19). Your answer should include three pictures, one after
each addition.

After add (1):

After add (25):

After add(19):

" :

CoMMENTS: For this question, the key concept is that keys inserted into to binary
trees are always leaves. So long as each addition, in sequence, created a new leaf,
then the additions were largely performed correctly.

3 Mysterious Methods

Suppose that, somewhere outside the Queue class, my program contains the following
method (assume my Queue stores int values):

1 public void mystery (Queue g, int x) {
2 if (q.isEmpty()) {

3 q.enqueue(x) ;

4 return;

5 +

6 for (int i = 0; i < g.size(); i++) {
7 int y = q.peek();

8 if (y == x) return;

9 q.dequeue() ;

10 q.enqueue(y);

11 +

12 }

QUESTION: (a) [10 pts] What does this do? That is, in what way is the input q
modified (or not) when mystery runs?

(a) If the queue is empty, x is inserted as the sole item; otherwise, the
queue’s contents are rotated until either x is at the head or, if x is not present, q is
returned to its original state.

COMMENTS: The most common conceptual problem with this question was to as-
sume that only this method affected the queue. A number of people failed to see
that the queue could be manipulated outside of this method, and therefore the queue
could have arbitrary contents when called.

QUESTION: (b) [10 pts] Suppose the Queue class is implemented using a doubly linked
list with head and tail pointers. Let n be the number of items in the queue. In terms
of n, what is the worst case big-O runtime of mystery? What’s the best case big-O
runtime? Explain your reasoning.

Best case is that x is already at the head of the queue, which requires O(1)
time. In the worse case, x is not present, and the entire queue of n items is rotated
(removed and re-inserted), requiring O(n) time.

CoMMENTS: The concept of a best case was often misunderstood, in which many
people referred to the time that this method would take when the queue was empty.
However, big-O expressions refer to bounds as a function of the input size. Even
for a best case analysis, the result must be given in terms of an arbitrarily large queue
size. That is, how much time does this method take, in the best case, even when
n is large? Here, the result is O(1) not because the queue is empty, but because

5

the value sought (x) will be, in this best case, at the front of the queue already, no
matter how large n is.

4 Skip Lists

For the following skip list of integers...

@ null
® o null
header| @ 4 ® 8 ® 12 |null

..answer the following questions about performing the operation add (10):

QUESTION: (a) [5 pts| Trace the search that would performed by the operation
find(10). That is, show where the search would begin, and how it would move
through the skip list structure, from beginning to end. (If you draw on this page,
please be sure to scan it with what you submit; if answer this question on another

piece of paper, redraw the skip list there.)

ANSWER: (a)

,
‘ D null
P S — —
[[> null
s v
header| @ 4 ® 8 ® 12 |null

COMMENTS: Some people’s answers did not quite follow the search path all the way
to the predecessor node at the lowest level.

QUESTION: (b) [5 pts] Show the resulting stack of pointers that £ind(10) would

return.

ANSWER: (b)

® null

® ® null

header| @ 4 [8 ® 12 |null

COMMENTS: In many cases, the stacks drawn were too small or too large. In the
former case, some people forgot that a pointer to the header node was required for
level 2; in the latter case, some people included separate pointers to some nodes (e.g.,
the 4 node, the header node) for each level that those nodes contained. Here, one
pointer to the given node was needed, yielding a stack height of 3 to match the list’s
height.

QUESTION: (c) [5 pts] Assume that the new node is of height 3 (that is, with pointers
for levels 0, 1, and 2). Now assuming a fair coin (probability of heads or tails is 1/2
each), what sequence of coin flips yielded this height? And what was the probability
of that sequence?

(c) Heads, heads, tails," which has a probability of % X % X % = %.
CoMMENTS: This question caused a little trouble, because the presentation of it to

each section was a little different, and because some elements of that presentation
created a little confusion.

Some people confused the presentation of the expected number of coin flips for the
probabilty of a specific outcome (which is what this question presents). The expected
number of flips is 2 (given a sum of probabilities 1 + % + %1 + ...), but a probability
must be a value between 0 and 1.

And the probability here depends on whether you consider the final flip, which must
terminate the sequence, as one of the events. Some people took, from the expected
number of flips analysis, that the final flip did not count, in some sense, as part of
the probabilistic evaluation, counting only the first two flips. However, the third

'That’s if you're in Section 01; for Section 02, it would have been tails, tails, heads. Both are
equivalent.

flip was only the terminating event because of its outcome; it still had a % probabil-
ity of not terminating the sequence, allowing another flip. Many people calculated
a probability of % X % = i, which clearly has the concept right, but gets a detail wrong.

QUESTION: (d) [5 pts] Redraw the skip list with this new node added into the struc-
ture.

()

@ ® null
@ @ ® null
header| @ 4 ® 8 ® 10 ® 12 |null

CoMMENTS: Not many problems here.

5 Checking Parentheses

QUESTION: [30 pts] Consider a string consisting of the parenthetical markings (,),
<, and >. A string is properly matched if: (1) there are the same number of opening
symbols— (, < —and closing symbols—), >; (2) every opening symbol is matched
with a closing symbol of the same type; and (3) the parenthetical symbols are prop-
erly nested. For example, the string (<><()>) is properly matched. The strings ((),
(<)>, and)<>(are not properly matched.

Write a method that takes a String as input and returns true if it is properly
matched and false if not. (You may assume that the input String includes only the
four allowed symbols). Your method should use stacks and/or queues to accomplish
this task; you may declare a few extra variables of type int, char, double, boolean,
or String if you want, but you should NOT use any data structures that can store
multiple values other than stacks and queues (that is, do not declare any additional
arrays, Lists, skip lists, linked lists, etc.)

The charAt(int i) method in the String class may be helpful; you can write
s.charAt (i) to look up the character in position i of the string s (indexing starts
at 0).

1 public static boolean matched (String s) {

2

3 Stack<Character> stack = new Stack<Character>();

4 for (int i = 0; i < s.length(); i += 1) {

5 char ¢ = s.charAt(i);

6 if (c == "'C" || ¢ == '<") {

7 stack.push(c);

8 } else if (c == ")") {

9 if (stack.isEmpty() || stack.pop() != '(')
10 return false;

11 } else if (c == '>') {

12 if (stack.isEmpty() || stack.pop() != '<')
13 return false;

14 }

15 }

16

17 return stack.isEmpty();

18

19 }

CoMMENTS: Mistakes fell into two basic categories on this challenging question: big,
conceptual errors and small, detailed goofs.

10

Big errors: The most common was the failure to see that a single stack is needed to
keep track of, and to pair, open and closing braces. Each opening brace needed to
correspond to a push onto the stack; each closing required a pop and a matching of
the brace type. People often used queues (which don’t help), or multiple stacks. In
either case, the ability to pair and properly order the openings and closings couldn’t
be achieved, although some clever ad-hoc approaches handled a number of cases.

Small errors: The most common of these was to fail to test whether the stack was
empty. In particular, if the stack is empty when a closing brace is encountered, then
there is (at least) one closing brace too many, and the pattern fails. Likewise, if the
stack is non-empty at the end, then there are unmatched opening braces, and the
pattern again fails. The final common error was to pair and open and a close, but
not to compare the type of opening brace to its closing brace.

11

