
Data Structures
Spring 2021

Midterm 2 — Solutions

1 Red-Black Trees
Question: (a) [10 pts] Can the following binary search tree be colored to make it a
red-black tree? If so, shade in the black nodes to make this a valid red-black tree. If
not, explain what is wrong with the tree structurally.

Answer: This tree can be colored as a red-black tree, as follows:

Discussion: Most people did fine on this one. A few students colored 18 red and 21
black; this will not work because then the path 15-18-null would have only 2 black
nodes, rather than 3.

1



Question: (b) [10 pts] Can the following binary search tree be colored to make it a
red-black tree? If so, shade in the black nodes to make this a valid red-black tree. If
not, explain what is wrong with the tree structurally.

Answer: This one can’t be colored as a red-black tree. One problem is that the
subtree rooted at 22 is too unbalanced. 22’s right child is a null leaf, so 22 can have a
black heght of at most 2 (if we color both 22 and its right child black). If we do this,
we’d have to color both 15 and 17 red so that the path 22-15-17-null also only has 2
black nodes; this isn’t allowed because a red node (15) cannot have a red child (17).
Many other explanations are possible; there are several unbalanced subtrees within
this tree.

Discussion: Everyone correctly identified that this tree cannot be colored as a
red-black tree. The most common problem was not giving enough detail in the ex-
planation; we asked you to explain what is wrong with the tree structurally. This
meant that you either had to explain what goes wrong when you try to color the tree,
or point out that the shortest path from the root to a null leaf is less than half the
length of the longest path from the root to a null leaf.

2



Question: (c) [10 pts] Here is a red-black tree:

(In case you’ve printed in black and white and it isn’t clear: 6 is the only node colored
red in this tree.)

Show what the tree looks like after adding 7. Be sure to clearly indicate the color of
each node in your final tree.
Answer: We’ll show what the tree looks like after each intermediate step of the add.
First, we do a normal BST add and color the new node, 7, red:

We observe that the new node’s parent, 6, is red, and the parent’s sibling, 10’s null-
leaf right child, is black. So we follow the fourth case of RBT-repair, in which we need
to do some rotations to fix the structure of the tree. We begin with a left-rotation on 6:

3



Followed by a right-rotation on 10:

And finally, we finish it off by recoloring as follows:

Discussion: Most people did fine with this. A few students rotated incorrectly,
ending up with a tree that no longer satisfied the regular BST properties. The most
common mistake was, at the end, coloring 7 red and 6 and 10 black. While this
recoloring would give us a valid RBT in this case, it’s not the correct recoloring to
use in general because there is no guarantee that the parent of this subtree is black.
That is, coloring 7 red after the rotations could have created a situation where we
have a red node (7) with a red parent, which is not allowed.

4



2 Hash Tables
Consider the following hash table that uses open addressing:

index 0 1 2 3 4 5 6 7 8 9
key 50 72 26 107 66

Question: (a) [10 pts] If this hash table uses the hash function h(k) = k%m, (where
m = 10 for this array), and employs linear probing upon collision, show how it will
place a new key when add(46) is performed. That is, indicate which positions are
visited, in what order, and then show where the new key is placed.

Answer: Three collisions occur before finally placing the 46. The attempts occur
as follows:

1. h(46) = 46%10 = 6. The 26 stored in position 6 is a collision.

2. Linear probing dictates that we next attempt position 7, at which 107 causes
a second collision.

3. We next attempt position 8, where a collision with 66 causes the third collision.

4. Finally, position 9 is unoccupied, and 46 is placed there.

Discussion: Nearly everyone got this one. Not much to say.

Question: (b) [10 pts] If this hash table employs double hashing, using the hash
function h(k) = (ha(k) + ihb(k))%m, where i is the iteration number (that is, the
number of slots in which you’ve already attempted to place this key), ha(k) = k, and
hb(k) = 7−(k%7), show how it will place a new key when add(46) is performed.

Answer: There will be one collision before placing the 46:

1. On iteration 0, ha(46) = (6 + 0 × hb(46))%10 = 6, where the 26 will cause a
collision.

2. On iteration 1, ha(46) = (6 + 1 × (7 − (46%7)))%10 = (6 + 3)%10 = 9, which
is unoccupied, and 46 is placed there.

Discussion: A number of people considered the intitial attempt to be iteration
i = 1, when it needs to be i = 0. Others simply miscalculated hb(k). Finally, a few
people took the result of h(k) at iteration i = 1 as an addative value for the initial
index of 6 from the 0th iteration; each h(k) result, at each iteration, is its own index
that does not need to be combined with previous results.

5



3 BST Size
Question: [25 pts] Suppose you have a class Node that stores pointers to three
Node objects parent, left, and right, and you have a class BinarySearchTree that
stores a pointer to a Node root. Write a method in BinarySearchTree called size
that takes a Node as input and returns an int. When called with the root as input,
your size method should return the total number of nodes in the tree. Your method
should be recursive.

Answer: Here’s a method that will accomplish this:

public int size(Node current) {
if (current == null) return 0;

return 1 + size(current.left) + size(current.right);
}

Discussion: Most people did quite well with this. Errors fell into a few broad
categories. First, some of you had a base case that returns 1, rather than 0, if the
input node is null. This doesn’t quite work; it counts an entire level of nodes that does
not exist below the leaves. Second, some of you included an extra input parameter
that was meant to count how many nodes have been encountered so far. This extra
parameter wasn’t allowed (the question specifies that the method should take a Node
as input) and was often used incorrectly. Third, some of you created a global variable
to keep track of the size, and updated this size counter while doing a traversal of the
three. This isn’t technically incorrect, but it circumvents the need to actually do the
computation recursively, which was the point of the question.

6



4 Joining BSTs
As in question 3, suppose you have a class Node that stores pointers to three Node
objects parent, left, and right, and also stores a key K key and a value V value.
You also have a class BinarySearchTree that stores a pointer to a Node root. The
BinarySearchTree class implements the Dictionay interface (i.e., it includes the
methods V add(K key), V remove(K key), and V lookup(K key).)

Suppose we want to join two BSTs. Specifically, suppose we start with two BSTs, T1
and T2, where we know that all of the keys in T1 are smaller than all of the keys in
T2. We also know that T1 contains n nodes, T2 contains m nodes, and n < m.

Question: (a) [15 pts] Add a method called join to the BST class that, when given
a BST as an input parameter, returns a new BST that is the result of joining T1 and
T2. That is, your method should have the header:

public BST join(BST T2)

For example, if T1 contains the keys 1,3,6 and T2 contains the keys 8,9,13,14, then
the call T1.join(T2) should return a single tree containing keys 1,3,6,8,9,13,14.

Your goal should be to write a join method that is as efficient as possible. That is,
it should have the smallest big-O runtime in n and m that you can come up with.
You will get partial credit if your solution is correct, but does not have the lowest
possible big-O runtime. You will also get partial credit if you give a clear explanation
of what your method would do, but do not provide the actual code.

A good answer:

public BST join (BST T2) {

BST T1 = this;
Node rightmost = T1.root;
while (current.right != null) {

rightmost = rightmost.right;
}

rightmost.right = T2.root;
T2.root.parent = rightmost;
return T1;

}

7



A better answer:

public BST join (BST T2) {

BST T1 = this;
Node rightmost = T1.root;
while (current.right != null) {

rightmost = rightmost.right;
}

rightmost.parent.right = rightmost.left;
if (rightmost.left != null) {

rightmost.left.parent = rightmost.parent;
}

Node newroot = rightmost;
newroot.parent = null;
newroot.left = T1.root;
newroot.right = T2.root;

return new BST(newroot);

}

Discussion: Many people got the good answer; a few managed the even better an-
swer of promoting the largest key in T1 to the root of the new tree, then making
what’s left of T1 its left child, and all of T2 its right child. Common mistakes with
these approaches included a failure to update parent pointers, and a failure to return
some BST pointer at the end.

The most common correct-but-not-wonderful answers involved traversing a tree (or
both trees) to remove and insert the keys into the other tree (or a new tree). Sim-
ilarly, some traversed the trees to extract the keys into an array, which was then
sometimes sorted, and then construct a new tree out of it. A number of you per-
formed the traversal by creating an managing their own stack. These approaches are
slow and needlessly complex; notably, they fail to take advantage of the conspicuous
assumption that all of T1’s keys are less than all of T2’s keys. It is during these
overly involved answers that all kinds of detailed mistakes were made in extracting
the keys, managing the arrays, and reconstructing the new trees.

8



Question: (b) [10 pts] In terms of n and m, what is the average-case big-O runtime
of your join method?

Answer: For the both versions, assuming reasonable balance O(lg n) would be re-
quired to traverse the maximum key in T1. What remains is O(1) for pointer updates.

Discussion: The correctness of the answers to this question depended heavily on the
answers to part (a). For those who traversed one or both tree, a correct accounting
of the O(n +m) nodes was critical. It was also important to observe that inserting
keys into some final tree had to account for the n+m total nodes in that tree at the
end, and the average case O(n +m) of each add operation. Likewise, for those who
removed nodes from one tree while putting them into the other, you had to account
for the lg time to perform each removal.

9


