
Performance Evaluation and Optimization
Spring 2019

Course Information
Last updated: 2021-Jan-15

Be sure to read all of this document!

1 The topics
Computer systems are immensely complex, yet much of that complexity is hidden from the
typical programmer (and user). Layers upon layers of abstracted capabilities are employed
when the user-level programs are run. When the program performs sufficiently well for its
users, then those layers are behavior sufficiently well.

But what happens when a program performs poorly? Sometimes, the answer is provided
by asymptotic algorithmic analysis: the programmer used an O(n2) sorting algorithm on a
truly large array. More often, however, the proximate cause of the slowness involves the
constant factors that such theoretical analyses ignore. How do we find where those constant
factors are larger than they need to be? Through experimentation, coupled with a detailed
understanding of those layers, their interfaces, and how their implementations interact. The
primary cause of the the slowness could be something direct—a heavily used function that
could perform its task in fewer steps—or something caused by unexpectedly problematic
interactions indirectly caused by the subtle elements of the program.

The primary focus of this course is simply stated: How do you find the slowness? And how
do you then fix it? Our work will bring us to a number of experimental methods that allow
us unambiguously to determine whence the inefficiency, as well as the method of optimiza-
tions that follow.

Here is a rough list of the topics with which we will spend our time:

• Profiling and timing: How to measure the time and memory are used by different
parts program and system. Call graph profilers (gprof), binary instrumentation tools
(Valgrind), kernel tracing tools (DTrace/SystemTap), and CPU performance counters
(PerfSuite) can be used to measure performance as a whole and to probe the inner
performance of individual components.

• Benchmarks and models: How do we come up with a suite of programs and inputs
that are representative of how a system will really be used? Can the behavior of
programs or systems be reduced to a mathematical model? What happens if our test
suite or model are not sufficiently representative?

• Identifying bottlenecks: Once we know how to measure performance on represen-
tative inputs, how do we pinpoint the parts of the program/system that are limiting

1

https://sfkaplan.people.amherst.edu/courses/2021/spring/COSC-365/


performance? What if the limiting behavior occurs deep in the system in unexpected
ways?

• Performance optimization: Having identified the bottleneck, in what ways can we
try to alleviate the bottleneck and improve the performance?

• Performance analysis: How do we know whether our optimization actually improved
performance? If the performance seems to improve, how do we know whether our
change caused the improvement as intended, or caused it unintentionally by altering the
behavior of some other part of the system? What happens when multiple improvements
are composed?

• Parallelism and scalability: If our code runs in parallel, we hope for it to scale—
its performance should, in theory, improve linearly with the number of processing
units. How do we find the source of the communication/synchronization that limits
the scaling? What if the source isn’t in our code, but in some behavior deeper in the
system that our code is triggering?

This course will be a kind of experimental-methods seminar. We will read a few research
papers and analyze them. We will develop, as a class, experiments to test our understand-
ing of performance limitations. And then we will implement, execute, and analyze these
experiments in groups, presenting and discussing our results with one another.

2 Lectures, labs, and help
Lectures and labs: This class will meet on Tuesdays and Thursdays, from 1:30 pm
to 2:50 pm. We will variously use this time for lectures, group discussions, and labs. Ini-
tially, our class meetings will be on Zoom; whether there is any in-person compontent to
these class meetings is yet to be determined.

You are expected to be present for all class meetings. This is a smaller class that will
depend heavily on working together. Be prepared each day to participate fully.

Office hours and meetings: If you seek assistance, reinforcement, review, or other op-
portunities to discuss the course material or assignments, you should see me. There is a link
on the course web page for scheduling times for meetings.

Communications: You should certainly feel free to send email (<sfkaplan@amherst.edu>)
with your questions or thoughts. I also encourage the use of Slack. We will have a channel for
the class, as well as a channel for each research group, and it is a great way to ask questions
and share answers.

2

mailto:sfkaplan@amherst.edu
https://amherstcollege.slack.com


3 Texts and materials
There is no one textbook that covers the material from this class. There will be occassional
research papers to read, as well as documentation/tutorials for the system components and
measurement tools that we will be using. These will be posted on the class web page as the
semester progresses.

4 Projects
Because this course focuses on experimental methods, we will spend significant time design-
ing, implementing, executing, and analyzing our own experiments. Some of this work will
involve clearly defined, individual work that you will submit. Other parts of these experi-
ments will be carried out in groups. Your engagement with both the individual and group
work is indispensible, both for you and for the class as a whole.

5 Grading
At the end of the course, I will assess your mastery of the course material. To do so, I will
consider your individual project work, your group project work, and your participating during
in class lectures and discussions. All three of these elements of the course are opportunities
for you to demonstrate your understanding of the material.

3


	The topics
	Lectures, labs, and help
	Texts and materials
	Projects
	Grading

