
Computer Systems
Spring 2022

Course Information
Prof. Kaplan

1 Introduction
This course will employ a number of tools that are likely new to you. Indeed, a side-goal of
this course is to throw you into the deep end of using a wider variety of tools to program,
debug, communicate, and share code, all in an environment that is not your computer.

These tools are not chosen willy-nilly, or even just for the experience of using them. They
are chosen because they are powerful tools that can benefit our work. However, they seem
frustrating (if not outright maddening) if you do not learn how to use them. You should
expect to spend time getting acclimated to these; the more you do so, the more quickly and
effectively you will be able to delve into the projects that are so central to this course.

This document is not meant to teach you about all of these tools; instead, its goal is to
help you set them up and be sure that they are working for you. It is the initial step into the
course projects—a kind of Project 0. Go through its contents thoroughly, installing software
as needed, asking for help if you have problems, and making sure that you have access to
each tool as soon as possible.

2 Slack
Communication for this course will be conducted in a number of ways:

• Via website: The course website will be the primary location for announcements, the
posting of assignments, and links to any other materials.

bit.ly/cosc-171-22s

• Via email: For time-sensitive announcements, or for more involved and structured
exchanges, good ol’ email remains essential.

• Via Slack: For quick questions and informal one-on-one or group interactions, we
are going to use Slack. It’s a fancy texting platform that allows us easily to interact
individually, as a class, or in small groups.

For starters, you should login to Slack using your Amherst College credentials:

https://amherstcollege.slack.com

1

https://sfkaplan.people.amherst.edu/courses/2022/spring/COSC-171/
https://sfkaplan.people.amherst.edu
https://bit.ly/cosc-171-22s
https://amherstcollege.slack.com

You can use Slack within a browser from that site, or you can install the Desktop applica-
tion:

https://amherstcollege.slack.com/get

I recommend installing the Desktop application (and, if you ultimately like this tool, you
can also install it on your phone) so that you get notifications when new messages arrive.

When you install Slack, you should send me a direct message (sfkaplan), and then I
will add you into the class channel (cosc-171-22s).

Protip: In the upper left corner, if you click on the drop-down menu next to Amherst
College, you can click on Preferences. Within the Preferences window, select Advanced at
the bottom of categories on the left. At the top, under Input Options, there will be two
check-boxes:

• When typing code with ```, Enter should not send the message

• Format messages with markup

Select both of these. And then, if you’re not familiar with markdown,1, then you should
start to get familiar with it. If you’re going to have conversations involving code, it’s terribly
handy. To get started:

• Tutorial: If walking through an interactive tutorial is a good way for you to pick up
some new skills, try this markdown tutorial.

• Cheat sheet: If you like to have a quick reference on markdown handy, this markdown
cheat sheet is a simple reference that shows the basics.

• More depth: Search the web for markdown, and you will find ample documentation,
help, and examples.

3 ssh and git
To connect to a Linux server (see below, Section 5) and manage the code of this course’s
projects, you will need a collection of tools that work together. Specifically, you will need
an environment that provides:

• ssh (the secure shell): This software allows you to connect to other computers via the
network through encrypted communication channels.

• git: This revision control software is used to keep a history of your source code over
time. It will also allow you to document bugs, collaborate with others, and synchronize
copies of your code on multiple systems. It uses ssh to communicate with our repository
server.

1Yes, that’s right, the markup that Slack uses is one called markdown; it’s common for programmers.

2

https://amherstcollege.slack.com/get
https://www.markdowntutorial.com/
https://commonmark.org/help/
https://commonmark.org/help/

• X11 windows server: This old but effective software will allow you to run a program
on our class Linux server, but then have that system use your computer as the display,
communicating the management of the program windows over the network. We will
use ssh to carry that communication between this software and the Linux server.

3.1 Installing
How you set up these tools depends on the type of computer you have. Jump to the section
below for your computer.

3.1.1 macOS

XQuartz: Begin by installing the X11 server, known on the Mac as XQuartz. You can go
to https://www.xquartz.org to download this software. When you do, open the installer
(named something like XQuartz-2.8.1.dmg), and follow the standard installer prompts.

When you are done, run XQuartz—it should be in your Applications/Utilities folder.
You should then get a window that looks much like the Terminal app, showing you a shell
prompt at which you can type commands.2 This window is known as an xterm, and will be
the starting point working on projects on your computer.

ssh: Luckily, ssh is already installed by default on Macs. There is nothing you need to do
here.

git: To install git, download the Git for Mac installer at:

https://sourceforge.net/projects/git-osx-installer/

Just click the green Download button to start the download. Once downloaded, run the
installer.3 Once the installer has completed, jump down now to Section 3.2 to make sure
that you can type commands and that they work.

3.1.2 Windows

Installing: The easiest way to install all of these tools is to install a UNIX emulation layer
known as Cygwin. To install what we need, follow these steps:

1. Go to the Cygwin home page:

http://cygwin.com

On that page, under Installing Cygwin, click on the link for setup-x86_64.exe to
download the installer. Once it has finished downloading, run it.

2Don’t worry if you don’t know any commands to type.
3Your security preferences may not be set to allow this installation. If that happens, go to Settings ->

Security and Privacy, and under Allow apps downloaded from, select git.

3

https://www.xquartz.org
https://sourceforge.net/projects/git-osx-installer/
https://www.cygwin.com
http://cygwin.com

2. Just click Next.

3. Accept the default choice (Install from internet) by clicking Next.

4. Accept the default directory (C:\cygwin64) into which Cygwin will be installed, and
the default choice of installing for All users.4 Just click Next.

5. Once again, click Next to accept the default download directory.
4You can choose a different directory if you need to do so, but be sure to have a reason.

4

6. Yup, click Next, accepting the default to Use system proxy settings.

7. When prompted to Choose a download site, you can choose any one of the sites
listed. Choose one that seems close to you for faster downloads of the Cygwin packages;
they all have the same content, so there’s no wrong choice, only slow choices (depending
on your locale). Complete your choice by clicking Next.

8. After downloading a list of packages, the installer will show you window in which you
select packages to install. It initially will look something like this:

5

For the View, in the upper left, choose Full to see all of the packages. Then, next to
that, you can enter the name of a package in the Search bar, and only packages that
contain that name will be shown.
For example, enter openssh, and you will see a list of packages whose names include
that string. The third column, labeled, New, is where you select which version of the
package you want to install. The openssh package itself will be labeled Skip in this
column. If you click on the drop-down menu for that entry, you can select the most
recent version, at the bottom of that drop-down menu:

Having selected a version to install, you can now click the Clear button next to the
Search bar, allowing you to enter a different package name.
Follow this process to select the following packages to install:

• openssh (already selected, if you followed the above)
• git
• xorg-server
• xinit
• xlaunch
• xterm
• emacs-w32 (optional, but may be handy)

6

When you have selected these, click the Next button in the lower right, as usual.

9. You will see a window to Review and confirm changes. It will show a list of packages
that form the base of Cygwin, plus the packages that you selected, plus any packages
on which your selections depend (e.g., libraries). Click Next.

10. The Progress window will display the downloading and installing of each of the pack-
ages.

11. Finally, you will see a completion window. Decide whether you want Cygwin to appear
on your desktop and/or start menu. Finally, click Finish.

Running: Now that you’ve installed Cygwin, here is how you run it:

1. Click on your start menu, and type in XLaunch. The icon for that program should
appear. (You can right-click on it to pin it to the start menu or the taskbar.) Double-
click it to run XLaunch.

2. You will see a window to Select display settings. Accept the default, Multiple windows,
by clicking Next.

7

3. For the Session type window, select Start a program, and then click Next.

4. When asked to Specify the program to start, accept the default, Start program on this computer,
namely xterm. Click Next.

5. For Extra settings, the defaults are just fine. Click Next.

8

6. On the Finish configuration window, first take a detour by clicking Save configuration.

That will bring you to a file-saving dialog. Choose a folder (I think the Desktop is a
good place for this file), and name the file cygwin-start.xlaunch.

Click Save, and then you will return to the Finish configuration window. Click
Finish.

After a few moments, you should then get a terminal window that shows you a shell
prompt, at which you can type commands.5 This window is known as an xterm, and will be

5Don’t worry if you don’t know any commands to type.

9

the starting point working on projects on your computer.
Jump down now to Section 3.2 to make sure that you can type commands and that they

work.

3.1.3 Chromebooks, Linux, anything else

If you have a Chromebook, contact me, and we can try to figure out how to proceed. If you
have a Linux laptop, then all of the tools are already installed and ready to go. If you have
some other kind of computer, also contact me, and we can figure out what to do.

3.2 Testing your installation
Now that you have an xterm window open, with a shell prompt awaiting your input, let’s try
a few commands to be sure that our tools are properly installed and working. Your xterm
window will look something like this:

Notice that you may have somewhat different text prior to the prompt, which is the $
symbol. Traditionally, in documentation like this, the text prior to the prompt is not shown
(since it varies from system to system, and from user to user), but the $ is shown to signify
that what follows is the command that should be typed. That is, don’t type the dollar
sign; type what follows it.

A simple command: The ls command (short for list directory) will show the list of files
and directories (folders) in your current directory. Try it:

$ ls
Documents Downloads Templates Videos

The output you will see may not perfectly match the above—that’s OK. What you are
seeing is a listing of your Cygwin home directory, sometimes signified with a tilde (~) char-
acter. You can see the absolute pathname—the listing of directories starting from the top of
your hard drive—by using the pwd (print working directory) command:

$ pwd
/home/sfkaplan

10

Testing ssh: First, let’s verify that ssh is now an available command:

$ which ssh
/usr/bin/ssh

The which command is showing you that it found the ssh program in the bin directory,
which itself lies within the usr directory at the base of the hard drive. If you see something
like this…

$ which ssh
which: no ssh in (/usr/bin/:/bin:/usr/sbin:/sbin:...)

…then something has gone wrong with your installation of ssh, and you should seek help.
(Note that the list of directories following the no ssh in message may be much longer that
what is shown above.)

Assuming that ssh was found, let’s try using it:

$ ssh -Y yourusername@remus.amherst.edu

The authenticity of host 'remus.amherst.edu (148.85.1.64)' can't be
established. RSA key fingerprint is
SHA256:FspduCkkgtlHw6ZcBak54qgwHFOxMLCm+4K2ygb+THs. Are you sure you
want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added 'remus.amherst.edu,148.85.1.64' (RSA) to
the list of known hosts.

sfkaplan@remus.amherst.edu's password:

Warning: No xauth data; using fake authentication data for X11 forwarding.
Last login: Fri Aug 21 17:27:01 2020 from c-24-91-28-111.hsd1.ma.comcast.net
(remus)[1]~$

First, observe that you should not literally specify yourusername in the command; you
should substitute your college username (e.g., sfkaplan@remus.amherst.edu). Also note
that remus is the name of a Linux server to which you have login access. It is not the system
we will be using for this course, but it serves as a good test.

When asked, Are you sure that you want to continue connecting?, you may an-
swer yes. Luckily, this question, and the warning that precedes it, will only appear this
once. If you login to remus again later, it will not ask this question.6

You will notice that you have a shell prompt again, except this time, the commands will
be carried out by the server at the other end of the connection. You can try ls and pwd, for

6What is this question doing, then? It is verifying the public key fingerprint that ssh will use to com-
municate with the server. When you connect to remus later, it will match the fingerprint that the server
provides with the one you approved upon the first connection. If they don’t match, it will warn you, since
that may imply that the security of the connection is compromised.

11

example, but you’ll see different things than when those commands were being carried out
on your computer.

As a final test of the ability to give commands that open windows, try this:

$ xeyes &

After a few moments, you should see something like this:

As you move around your cursor, the simulated eyes will follow it. That’s a sign that the
login has worked, and that the server (remus) is using your screen as its display.

When you have enjoyed this silly program for a moment, you may close it (click the close
button, as usual), and then exit from remus:

$ exit

Doing so will bring you back to the shell prompt running on your own computer.

Testing git: First, use the which command to make sure that the shell can find the git
program:

$ which git
/usr/bin/git

You can see a menu of commands (which may not make much sense to you now) by entering
git help at the prompt; go ahead and try it. Otherwise, we cannot more deeply test git
until we do some other things first. Onto the next section.

4 GitLab and key pairs
In order to share code, track changes, keep a history of versions, and document issues, we
will use git in concert with GitLab, which is a repository platform.7 The college has its own
GitLab server, gitlab.amherst.edu, that will allow us to work together in groups easily via
our college logins.

Finally, GitLab allows us secure and easy logins via ssh keys. We are going to leverage that
capability to enable access to this class’s Linux server, which we will address in Section 5.

To get our GitLab server configured for our uses, follow these steps:8

1. Access the college’s GitLab server through a browser. Specifically, use this link:
7You may also have heard of GitHub, which is quite similar.
8These instructions are derived, in part, from a help-page on our GitLab server:

https://gitlab.amherst.edu/help/ssh/README. Feel free to refer to these instructions for additional
help.

12

https://gitlab.amherst.edu/help/ssh/README

https://gitlab.amherst.edu

You will be presented with a login page, where you should use your Amherst College
username and password.

2. Go back to your xterm, and at your shell prompt, enter the following command. Be
careful to recreate the sequence of characters exactly:

$ ls ~/.ssh/id_rsa

What you do next depends on the output of this command:

Do you see output something like, /home/username/.ssh/id_rsa: You already
have an ssh key. (Did you set it up for some previous class or project?) Skip to
the next step.

If you see an error ending, No such file or directory, then we need to make
an ssh key. Doing so requires a few steps:

(a) Begin by entering the following command, substituting your actual Amherst Col-
lege username for yourusername in the example:

$ ssh-keygen -o -t rsa -b 4096 -C "yourusername@amherst.edu"

(b) When prompted to choose where to save the key pair, just press Enter to accept
the default suggestion:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/sfkap/.ssh/id_rsa):

(c) You will be prompted to enter a password (a.k.a. passphrase), needing to type it
twice to verify that you typed it correctly. Notice that when you type, nothing
will appear in the terminal—not even placeholder dots or asterisks.

Once you have entered your password twice, you’ll see some additional output:

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/yourusername/.ssh/id_rsa
Your public key has been saved in /home/yourusername/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:aApoeU48NYIeNmSORL4fv0CVsVd1NPJnmLBVFx0/imw
yourusername@amherst.edu
The key's randomart image is:
+---[RSA 4096]----+

13

https://gitlab.amherst.edu

|.= . ..+.=.+=|
|B . + . B + +|
|.B . * . . + +.|
|o.* + o. . . + .|
|.=.B o S E . |
|. *.+o . |
| +.. |
| . . |
| . |
+----[SHA256]-----+

This last bit of output is a graphical-ish, textual representation of your public
key’s fingerprint. Don’t worry about it.

3. Copy the contents of that public key into your clipboard, using the pbcopy command
if you use macOS, and clip if you use Windows:

For macOS:
$ pbcopy < ~/.ssh/id_rsa.pub
For Windows:
$ clip < ~/.ssh/id_rsa.pub

4. Now return to your browser and GitLab. In the upper right corner, click on your avatar
(it may be a little picture of you, or appear as a little circle with your initials) to get
a drop-down menu. Select Settings.

A new screen will appear, with a column of sections on the far left. Choose SSH Keys.

Look at the bottom of the window, under Your SSH keys: Is there a key already
there? If so, then skip to the next step. If not, continue here.
Click in the text box under Key, and then paste. You should see pasted something
that looks like this:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDcC6LMDcpFoVLvQx9/PmfaQHPl1Pg2
AB1gA5gAKWU3H9HUGtZFktDapOB4aqzUgkEea0k8NLB8hLu7M+C4cd+tZWYDuZM7oWFD
zX6kI5Mlgs6WwZOvp8ikle34589GYf43hzQQqd0SnJv2l3jnYteOivEFUbZOikwGpMuT
Y4bZ46rVxQkMY5hdX3QzIu8qOWMk0FOJjNPLU53uLA3ZFn+2ZA48UssieulByuNlxWd+
P8acazGym3sDXPUv/OkIlDd/0nDXBfZnOBcbVcFqfAj4pC1/nqYfVetpYLzGc87RR46a
NhY+GHV2UT7pLd7Nh6jbQgz6dnxKdIFg4o9j5I/ayCsbJVWx3CM2AbNxSMv3APbvNhzG
pn5LZThOemrpMbuRZoC6dls5uaH1VYdlusy6mgZlVJSfxF5UzFWEiP+HZRQsYYWZDft1
4nOGXdiWBe+MWt2TzxXwUHgUzT/5KRQR7CtSAq1eKRIYykqKOEez/hpcIkBfFOeNIwW4
Sp190KXxW4lnfGugeS0HTY8uC41v5QKFpZUj6Yx5ZK3NFCG1D9HU6DmMF1MjoBgo0mrd
AK8UCFcihfhGI31kG2LOxxkyKW/URMoJDwhq+nWifN1iU+nHXA/8vthJxJzeiu+B0vAC
I5rcWUUe8f6NRS1jCFdqX4Vi1r7PMGgcIycRMVa18Q== yourusername@amherst.edu

14

Then, under Title, just put your Amherst College email address, with the @amherst.edu.
Finally, click the Add key button.

5. Finally, to test that everything is configured correctly, go back to your xterm and enter
this command into your shell:

$ ssh -T git@gitlab.amherst.edu

Just as you saw a warning when you first made an ssh connection to remus.amherst.edu,
you will see a similar warning and a prompt, asking whether you want to accept the
fingerprint for the server. Enter yes.
You will be prompted for the password you chose when making the key, and then you
will see a welcome message:

Welcome to GitLab, @yourusername!

6. One last step! Open Slack, and send me a direct message, telling me that you’ve
completed the configuration of ssh keys for GitLab.

5 The systems.aws server
When I get the message on Slack that you’ve configured a key on GitLab, I will add you to
a special group on that platform. Within a handful of minutes, some code will run that will
copy your key onto another system: our class Linux server.

This server is where we will do all of our work. It contains all of the software that we
need—assembler, compiler, debugger, editors, specialized libraries and kernel modules—for
our projects. You will connect to it via ssh, and it will know your identity via your ssh key.

To connect to the server, go to your xterm, and enter the following command at your shell
prompt:

$ ssh -Y yourusername@systems.aws.amherst.edu

You will first get the warning about the fingerprint and the request to continue; enter Yes.
You will then be prompted for your ssh key passphrase; enter it, remembering that nothing
will appear as you type.

And then you should see some login information, ending with a shell prompt, something
like this:

Warning: No xauth data; using fake authentication data
for X11 forwarding.
Linux ip-172-21-144-196 4.19.0-10-cloud-amd64 #1 SMP Debian
4.19.132-1 (2020-07-24) x86_64

The programs included with the Debian GNU/Linux system are

15

free software; the exact distribution terms for each program
are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Aug 16 22:33:25 2020 from 68.235.43.14
yourusername@ip-172-21-144-196:~$

At this prompt, you can use the same commands that you have typed on your computer
and on remus: ls, xeyes, and more. Try the xeyes command to make sure they appear.
When you are done, exit.

6 Conclusion
If you have gotten this far, then you have the tools you need to get started with the projects
for this course. Do not worry that you don’t really know yet how to use these tools; that
will come later, as we learn x86 assembly and C, and dig into the projects themselves.

If any component of these tools doesn’t work, contact me on Slack or via email.

16

	Introduction
	Slack
	ssh and git
	Installing
	macOS
	Windows
	Chromebooks, Linux, anything else

	Testing your installation

	GitLab and key pairs
	The systems.aws server
	Conclusion

