
Networks
Project 2a

Network Layer Routing
Continuing with the code base from Project-1c, we add a NetworkLayer. Doing so requires

some restructuring of the DataLinkLayer, and of each Host and its network stack as a whole,
but most of the structure should be familiar. With the NetworkLayer in place, we make
routing possible through multiple links.

1 The simulator
Getting it: To get started, download the simulator’s source code:

https://bit.ly/cosc-283-23f-p2a

New structure: As with Project-1c, each host is represented by a Host object, which then
communicates with a NetworkLayer. The NetworkLayer, in turn, has multiple DataLinkLayer
objects—one for each link to another host. (Of course, each DataLinkLayer is connected to
its own PhysicalLayer, and pairs of these |PhysicalLayer| objects share a Medium.)

Each Host is run as a thread. A message is read from a file (as usual) and passed to
the sending host. That host passes the message down to its network layer, which is then
responsible for creating packets to contain the data, and sending each packet along one of
its links to move it towards the destination host. Each host along the way should forward
the packet. When the packet arrives at its destination, its contents should be delivered to
the client (the Host).

Running the simulator: Once you have completed the implementation of the RandomNetworkLayer
(see below, Section 2), begin by seeing the usage of the simulator:

$ java Simulator
Usage: java Simulator <medium type>

<data link layer type>
<network layer type>
<links file>
<source host>
<destination host>
<transmission data file>

As usual, you need to specify a medium type (which should be Perfect) and a data link
layer type (Dumb). This combination will avoid the added complexity of error detection and
flow control when trying to debug the new network layer code. In specifying a network layer
type, you will be implementing a RandomNetworkLayer, and so you should specify Random

1

https://sfkaplan.people.amherst.edu/courses/2023/fall/COSC-283/
https://sfkaplan.people.amherst.edu/courses/2023/fall/COSC-283/assignments/project-2a.pdf
https://sfkaplan.people.amherst.edu/courses/2023/fall/COSC-283/assignments/project-1c.pdf
https://bit.ly/cosc-283-23f-p2a

here.

The links file contains a listing of the direct connections between pairs of hosts. The file
takes the following format:

Earth Mars 20
Earth Venus 15
Venus Mercury 7
Mars Jupiter 12
Earth Jupiter 55

Each row of this file represents a single link between two hosts: the first two fields are
strings that provide hostnames, and the third field is an integer connection weight, repre-
senting the cost (in an abstract sense) of communicating over that link.

From this list of links, Simulator creates the objects needed: for each new hostname, it cre-
ates a Host and NetworkLayer; for each link, it creates a Medium, which it then connects to
PhysicalLayer and DataLinkLayer objects that attach to the given hosts’ NetworkLayers.
Thus, from the list of links, the entire simulated network is created.

The source host and distination host are simply hostnames from which, and to which, a
message should be sent through the simulated network. The transmission data file contains
the bytes to be sent. Thus, invoking the simulator should look something like:

$ java Simulator Perfect Dumb Random links.txt Venus Jupiter message.txt

2 Implementing random routing
The RandomNetworkLayer should be completed to implement randomized routing. That is,
when a packet arrives, a RandomNetworkLayer object should determine how to handle it.
If the packet is destined for this host, then deliver the data; if the packet is destined for
another host, it should randomly select a link through which to forward the packet.

The following methods, which are abstract in the parent class NetworkLayer, need to be
completed in RandomNetworkLayer:

• createPacket(): Given a sequence of bytes and a destination, create a packet from
this host (which is the source) to the destination host, returning the bytes of the packet.
This is where a packet header must be created, and thus a packet format determined.

• route(): Given a destination, determine which outgoing link to use in order to send
a packet towards that destination.

2

• extractPacket(): Given a queue of received bytes, examine that queue to determine
whether a full packet has arrived. If so, extract those bytes from the queue and into
an array, returning the array of the complete packet.

• processPacket(): Given an array that contains a complete packet, examine its header.
If the packet is destined for this host, extract the data from the packet and deliver it
to the client Host; otherwise, route() the packet and re-send it.

3 How to submit your work
Go to GradeScope for our course, where you can submit your work. Notice that you should
only submit RandomNetworkLayer.java. Don’t submit the other source code or class files.

This assignment is due on Friday, Nov-10, 11:59 pm.

3

https://www.gradescope.com/courses/562868

	The simulator
	Implementing random routing
	How to submit your work

