
Introduction to Computer Science II
Lab 4

Parsing an integer

1 Parsing text into numbers
Consider the following strings:

5
1234
Montana
32x48

The first two are textual representations of integers; the second two are not. All of these
could be inputs into a program (from the keyboard via System.in, or read from a file), and
sometimes, we want our programs to turn the former type of string into an int value on
which we can perform arithmetic.

This task—converting a sequence of digit characters into an integer value—is known as
parsing. We want to create code that can parse such strings, but also throw exceptions
when a string cannot be parsed in that way.

2 Your assignment
Get the code: Start a Terminal. Then, grab some starting source code and open it:

$ cd
$ curl -L https://bit.ly/cosc-112-24f-l4 -o lab-4.zip
$ unzip lab-4.zip
$ cd lab-4
$ code .

You will see that there is just one file, Parser.java, which itself is incomplete.

1

https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/
https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/assignments/lab-4.pdf


What you need to know: The readInt() method has a data member, InputStream _in.
It is through this data member that you have access to the input. Specifically, see the class
documentation:

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/io/InputStream.html

In that documentation, find the read() method, which takes no arguments. That method
returns an int; that value is either a character value that can be safely cast to a char, or it
is -1 to indicate that the end of the input has been reached. Each time you call it, it will
return the next character in the input, in sequence—that is, it remembers where it left off.

What to do: There are two things you need to complete…

1. Complete the readInt() method in the Parser class. It should read any decimal
integer and return its value as an int. If it cannot successfully read a sequence of
characters that compose an integer, it should throw a InvalidIntegerException.

2. Define the InvalidIntegerException, which should be a subclass of the Exception
class.

To compile and run your code, compile both of the .java files in your directory, and then
run the program (with no command-line arguments). It will then sit there, doing nothing
until you type. Type an integer (or a non-integer) and press enter, at which point your
readInt() method will be called. It should look like this:

$ java Parser
123
x = 123
$ java Parser
Peanut butter
Could not read integer: InvalidIntegerException: Non-digit: P

Optional challenges: If you get this code to work as desired, you can then try to handle
more complex integer inputs. Specifically, if you seek more practice, try to do the following:

1. Allow an optional leading dash (-) to signify a negative integer. For example, -132.

2. Allow the integer to be comma separated, with a comma (,) appearing at every three
orders of magnitude. For example, 32,967,009.

2

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/io/InputStream.html


3 How to submit your work
Submit your Parser.java and InvalidIntegerException.java files by uploading it into
the lab-4 folder in your shared Google Drive folder for this course.

This assignment is due on Sunday, Oct-27, 11:59 pm.

3


	Parsing text into numbers
	Your assignment
	How to submit your work

