
Introduction to Computer Science II
Lab 6

A generic, doubly-linked list with sentinels

1 Making things generic
The interface: Let’s use generics for our NiceList interface, making it NiceList<E>, and
likewise changing classes that implement it (e.g., NiceArrayList<E> and NiceLinkedList<E>).
The interface now becomes:

• public void insert (int index, E value)
Insert a value at the given index.

• public E remove (int index)
Remove and return the value at the given index.

• public void set (int index, E value)
Replace the value at the given index with the new value.

• public E get (int index)
Return the value found at the given index.

• public int length ()
Return the current length of the list.

The container classes: The NiceArrayList<E> class is provided. Recall that it uses an
array to store the values, and automatically resizes the array when needed. Notice, when
you look through it, that Java does not allow an array of type E[]; that is, generic arrays
are not allowed, due to a problem called type erasure.1 Consequently, the array is still of
type Object[], and the remove() and get() methods must use explicit casting.

The NiceLinkedList<E> is again only partially implemented. Your job will be to complete
it, much as you did with Lab-5.

1Don’t worry about exactly what this is. It’s a known limitation of Java arrays.

1

https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/
https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/assignments/lab-6.pdf


2 Changing the linked list structure
To implement the NiceLinkedList<E> class, you should note some changes to how it is now
designed.

Double linking: Each NiceLink<E> is now not only generic (to match the rest of the
code), but also contains both _next and _prev pointers. All of the methods that modify
the structure of the chain must maintain both pointers in each link.

Sentinels: The list now uses sentinel links to mark the head and tail. We will go through,
in lab, the use of inheritence to make the HeadSentinel and TailSentinel subclasses, each
of which has appropriately liminted capabilities.

Adding these sentinels means that the insert() and remove() methods should no longer
contain any special cases for operating at the ends of the list. Other changes (e.g., in the
constructor, in walkTo()) also reflect the use of these special links as bookends.

3 What you must do
Get the code: Start a Terminal. Then, grab some starting source code and open it:

$ cd
$ curl -L https://bit.ly/cosc-112-24f-lab-6 -o lab-6.zip
$ unzip lab-6.zip
$ cd lab-6
$ code .

Complete the linked list implementation: You must complete write the insert() and
remove() methods of the NiceLinkedList<E> class. You are welcome to borrow from your
Lab-5 solution, keeping in mind what is different about how this linked list is structured.

4 How to submit your work
Submit your NiceLinkedList.java file by uploading it into the lab-5 folder in your shared
Google Drive folder for this course.

This assignment is due on Sunday, Nov-10, 11:59 pm.

2


	Making things generic
	Changing the linked list structure
	What you must do
	How to submit your work

