
Introduction to Computer Science II
Project 2

The Game of Life, version 2

1 More abstracting, more capabilities
In Project-1, you implemented a basic version of the Game of Life; in Lab-3, you abstracted
the Cell class to allow for different types of cells (Conway and Highlife).

Here, we’re going to use more abstraction, adding capabilities and flexility that the original
code didn’t have. There will be more types and behaviors for cells and for grids. Read on
for details…

1.1 Create more cell types
Since you have already modified your code for multiple cell types, there are two more to add:

1. ZombieCell: This type of cell is always dead. If displayed, it should be shown as a z.

2. MorphingCell: If dead with 2 live neighbors, this cell becomes a ConwayCell; if dead
with 3 live neighbors, it becomes a HighlifeCell. If alive with 4 or 5 live neighbors,
this cell will remain alive. Otherwise, it will be dead. A live MorphingCell displays
as a #; a dead one displays as ^.

1.2 Create multiple grid types
Abstract the Grid class. The getCell() method’s behavior will be at least partially
defined in a subclass. Specifically, consider the following cases for a getCell() call:

• If (i, j) is within the grid, it returns the Cell contained at that location.

• If (i, j) is in the bounding frame—the set of cells one position outside of the proper
grid—then the behavior will depend on the subclass.

• If (i, j) is outside the bounding frame, throw an OffTheGridException to indicate
that (i, j) is outside of any range that should ever be requested.

Create the following subclasses, in which the behavior of getCell() is fully defined:

1. BoundedGrid: Any access to the bounding frame returns a ZombieCell.

2. WrapAroundGrid: Access to a position on the bounding frame should wrap around to
the opposite side of the grid. For example, in a grid of size r × c, a request for a cell
in row −1 should become a request to the cell in row r− 1. Likewise, a cell in column
c should wrap around to be the cell in column 0.

1

https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/
https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/assignments/project-2.pdf
https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/assignments/project-1.pdf
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://sfkaplan.people.amherst.edu/courses/2024/fall/COSC-112/assignments/lab-3.pdf

1.3 Observe the user interface types
Although there is no work for you to do here, notice that UserInterface is not an
abstract class, but rather an interface. The implementations of this interface, listed below,
provide different ways to see the cells evolving. Check out this code to see what it’s doing,
and then try each one. Specifically, there are three implementations of UserInterface that
you can choose when running Life:

1. TextUserInterface: Prints, as a log, the sequence of generations in rapid succession.
You’ve seen this from the beginning of Project-1.

2. SmartTextUserInterface: Like the TextUserInterface, but it uses Control Sequence
Introducer (CSI) codes to reprint the grid on top of itself in a Terminal window. By
printing CSI codes to the terminal in which the program is running, the cursor can be
made to move in arbitrary directions, allowing the user interface to reset the cursor to
the top of the grid output each time.
For example, to make the cursor move up 5 lines, the following print statement would
make that happen:
System.out.print("\u001b[5A");
Here, \u001b[is a special escape sequence that tells the terminal that special codes
are to follow. (That sequence is the CSI defined on the above web page.) The 5A is
the code to direct the terminal to move the cursor up (A) by 5 lines (5).

3. GraphicUserInterface: A user interface that uses the Swing package (part of Java)
to create a graphical window and draw the generation in it. More details to follow
soon.

2 Getting started
Gather the code: Start a Terminal. Then, grab some starting source code:

$ cd
$ curl -L https://bit.ly/cosc-112-24f-p2 -o project-2.zip
$ unzip project-2.zip
$ cd project-2

Next, make copies of some of your Cell classes from Lab-3, and then open it all:

$ cp ../lab-3/*Cell.java .
$ code .

2

https://en.wikipedia.org/wiki/ANSI_escape_code#CSI_codes
https://en.wikipedia.org/wiki/ANSI_escape_code#CSI_codes

3 Your assignment
Write the classes described above. These new classes, as well as the new behavior of modified
methods, may require changes elsewhere in the code. You are expected to identify
those locations and make those changes—that is, you are invited and encouraged to change
existing classes. When done, a user should be able to run the program with their desired
cell type, grid type, and user interface.

A special note about Morphing cells: Notice that when a Morphing cell changes
into a Conway or Highlife cell, the grid at that position should not contain a Morphing
cell that merely acts like a Conway/Highlife cell. Instead, an actual ConwayCell
or HighlifeCell object should appear at that position in the grid once the morphing has
occurred.

4 How to submit your work
Submit all of your .java source code files by uploading them into the project-2 folder in
your shared Google Drive folder for this course.

This assignment is due on Sunday, Oct-20, 11:59 pm.

3

	More abstracting, more capabilities
	Create more cell types
	Create multiple grid types
	Observe the user interface types

	Getting started
	Your assignment
	How to submit your work

