
CompilerDesign
Project 1-C

Simple calculator language — Code generation

1 Code generation
Convert the abstract syntax tree (AST) constructed during parsing into a sequence of assem-
bly code. Uh, yeah, that’s it.

2 Getting started
Begin by grabbing some starting source code at:

bit.ly/cosc-371-p1c

Extract the archive into a new directory. Only a few files, listed below, are included; all
of the other Java source code should be copied from your Project 1-B solution.

• Compiler.java: Minor additions to main() so that the AST, the root of which is con-
tained in the Program, is then called upon to generate code via a call to toAssembly().
The result is emitted into a .asm file.

• Program.java: The toAssembly() method is provided, emitting stub code to surround
the code generated by walking the AST to have each element generate its own code.
The code generated in Program.toAssembly() does three basic things:

1. Prologue: Set up the beginning of the assembly file, defining symbols and be-
ginning the code that will make up a main() function, within which all other
code will be embedded.

2. Per-expression: For each top-level expression in the program, pop its result
from the stack and pass it to printf() so that we see the result of the evaluation.

3. Epilogue: Complete main() by having it return. Also, generate a statics section
that contains each expression as a formatting string as part of what is passed to
printf() after each expression is evaluated.

1

https://bit.ly/cosc-371-p1c

• compile.sh: A script that, given the name of a Simple Calculator source code file
(.src), will:

1. Run our compiler on the source code, producing an assembly file (.asm). It also
captures any output from the compiler in a log file (.log).

2. Run the assembler (nasm) on that assembly file, producing an object file (.o).

3. Run the linker (ld, via gcc) on the object file, producing an executable (no file
extention).

3 Your assignment
Complete the code generation for our simple-calculator language. Specifically, add
toAssembly() methods that traverse the AST, creating and returning (as a String) the
assembly code corresponding to the program represented by the AST.

A good implementation of the code generator should:

• Correctly generate code that carries out the program.

• Emit code that a human can match (via comments embedded in the assembly) to the
source.

To test your compiler on a program, use the compile.sh script. For example, if I have a
Simple Calculator source code file that looks like this…

Hello

4
(+ 3 1)
(* 20 5)
(* 20 (- 0 1))
(% 92 60)

2

…then I should be able to compile and run it and see the following…

$./compile.sh test.src
$./test
4 = 4
(+ 3 1) = 4
(* 20 5) = 100
(* 20 (- 0 1)) = -20
(% 92 60) = 32

4 How to submit your work
Copy/upload all of the Java source code files for this project in the project-1-C
folder in your shared Google Drive folder for this course.

This assignment is due on Thursday, Sep-26, 11:59 pm.

3

	Code generation
	Getting started
	Your assignment
	How to submit your work

