
Computer Systems
Project 1

Working with simple assembly/machine code

1 x86 assembly code
We have discussed, during lecture, the basics of assembly code and how it is transformed into
machine code. For this first project, you are going to get a little hands-on experience with
both forms of code and how they are really used.

For our assignments, we will be working on Linux systems that run on processors that
implement the x86-64 instruction set architecture (ISA). While we will later work with the
C programming language, for this assignment, we will use the nasm assembler to translate
our assembly code to machine code, and the GNU debugger (gdb) to help us run and debug
the code. I will note here that the materials available for all of these—Linux, x86-64, nasm,
and gdb—is an embarrassment of riches. There is extensive documentation, tutorials, code
samples, and discussions on their uses, targeted at audiences ephebic to expert. In short,
when you run into difficulty or are unsure of what to do, first, use The Google. In this
context, it is the right thing to do to find answers and understand more.

Our foray into this type of assembly programming is going to require an understanding of
the following capabilities and concepts:

• Sections: The division of the code into instructions (text) and data.

• Labels: The marking of specific instructions and data with names.

• Instructions: The sequence of steps, each defined by an opcode and operands, that
make up the program.

• Registers: The small set of fast memory elements to hold data.

• Main memory: The addressable storage of all of the instructions and data and its
layout.

• System calls: How to call into the functions of the operating system kernel, passing it
arguments.

1

https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/assignments/project-1.pdf
https://www.nasm.us/
https://www.gnu.org/software/gdb/

2 Getting started
1. Install and set up the tools: If you haven’t already, follow the instructions to set

up the tools needed to do the projects.

2. Login to the server: Open a terminal window to get a shell prompt, and then
connect to the class server…

$ ssh yourusername@systems.cs.amherst.edu

3. Login to GitLab: Before you download the code to get started, create a repository
on our GitLab server, which will server as a backup and history of your work. (It is
also how you will submit your completed assignment.)

From your browser, login to gitlab.amherst.edu

4. Start a new project: In the upper-left of the GitLab page, you will see a little
drop-down menu marked by a plus-sign. Click that, and then select from the menu,
New project/repository.

A new window will appear (Create new project), giving you options of what to create.
Select Create blank project.

5. Name and create the project: Set the Project name to be sysproj-1, and leave
the other default values. Click on the Create project button at the bottom.

6. Clone the repository onto the course server: Next, clone the repository you
just made on the GitLab site onto the course server, and then change directories into
the newly created directory on the server. In your terminal window, connected to
systems.cs, It should look like this:

$ git clone git@gitlab.amherst.edu:yourusername/sysproj-1.git
Cloning into 'sysproj-1'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (3/3), done.
$ cd sysproj-1

7. Fix your identity for the repository: git allows users to specify their identity
(name and email), and it wants you to confirm the automatically configured values by
GitLab (lest it give you lots of warning messages). To do so, do the following:

$ git commit --amend --reset-author -m "Fixing identity."

2

https://moodle.amherst.edu/mod/page/view.php?id=846884
https://moodle.amherst.edu/mod/page/view.php?id=846884

This command will be followed by the very warning that it is intended to quash; it
should be the one and only time that you see it.

8. Download the source code: The wget command will copy two source code files into
your directory. You can list the directory to see them after you perform the download:

$ wget -nv -i https://bit.ly/cosc-171-24s-p1
$ ls -l
total 9.0K
-rw------- 1 you you 1.4K Aug 14 13:58 countdown.asm
-rw------- 1 you you 1.1K Aug 14 13:58 hello.asm
-rw------- 1 you you 194 Aug 14 13:58 project-1-files.txt

9. Add the source code to the repository: Tell git that the two assembly code files
(.asm files) are now part of the repository:

$ git add *.asm

Notice that no news is good news. This command generates no output when
everything goes correctly.

10. Commit and push the updated repository: First, commit the changes—the ad-
dition of the .asm files. Then, push this update to GitLab.

$ git commit -m "Starting code."
[master (root-commit) c812cdc] Starting code.
2 files changed, 70 insertions(+)
create mode 100644 countdown.asm
create mode 100644 hello.asm
$ git push
Enter passphrase for key '/home/yourusername/.ssh/id_rsa':
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 1.15 KiB | 1.15 MiB/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To gitlab.amherst.edu:yourusername/sysproj-1.git
* [new branch] master -> master

If you like, you can go back to your browser and refresh the GitLab page. You should
see the source code files appear as part of the repository there.

3

11. Open our first assembly code program: At your shell prompt, open the hello.asm
assembly source code file into a text editor. Specifically, I recommend using Emacs
or Vim, both of which are made for editing code. If you have never used either, a
simple web search for emacs tutorial or vim tutorial will show you a number of useful
beginner’s guides to learning these editors.1 To open the file with Emacs, for example,
do the following, and then move onto the next section…

$ emacs hello.asm

3 An already-written program
You should now have an Emacs window open, showing you a simple program that writes a
message to the console/terminal (henceforth, standard output, or stdout). Here is what you
should do with it:

• Read it: This program sets up and performs two system calls—special function calls
to an underlying, basic operating system kernel. The first prints a message by calling
on the kernel to write a string to the stdout; the second calls the kernel to exit, thus
ending the program. See how various registers are set to appropriate values to carry
the desired operation and arguments to each system call.

• Assemble it: Translate this “human readable” assembly code [hello.asm] into ma-
chine code (specifically, object code) [hello.o].2

$ nasm -felf64 -gdwarf hello.asm

• Link it: Wrap the object code [hello.o] in a special layout that the kernel will
interpret as a runnable program, known as an executable file [hello]:

$ ld -o hello hello.o

• Debug/test it: Load the executable file into the debugger, where we can run it in a
very controlled fashion and see the result of each step. Once loaded, first disassemble
the program, making gdb turn the machine code back into assembly code:

1As an alternative, it is possible to set up VSCode with the ssh extension plug-in to connect to the server
and do your editing; the TA’s can help with this setup if you want to try it.

2Object code files are an intermediate form between assembly and an executable program. For bigger
programs, multiple object files, which contain machine code and statics produced by the assembler, and be
combined by a linker to make a single executable program file.

4

$ gdb hello
(gdb) disassemble _start
Dump of assembler code for function _start:
Dump of assembler code for function _start:

0x0000000000401000 <+0>: mov $0x1,%eax
0x0000000000401005 <+5>: mov $0x1,%edi
0x000000000040100a <+10>: movabs $0x402000,%rsi
0x0000000000401014 <+20>: mov $0xd,%edx
0x0000000000401019 <+25>: syscall
0x000000000040101b <+27>: mov $0x3c,%eax
0x0000000000401020 <+32>: sub %rdi,%rdi
0x0000000000401023 <+35>: syscall

End of assembler dump.

There are a number of things worth noting in this disassembly:

– The first column shown is the main memory address at which the program’s
machine-code instructions have been loaded. The addresses are shown in hex-
adecimal, or base 16, which is denoted by the prefix 0x on each address. The
starting address of each instruction to shown.

– The second column, in angle-brackets, is the address offset of each instruction.
That is, it is the number of bytes from the beginning of the code to the given
instruction. For some strange reason, the offsets are given in decimal.

– The third column provides the opcode of each instruction. Notice that the assem-
bler may have changed the opcode to be slightly different from the one written in
the source assembly code. For example, the movabs opcode sometimes appears in
place of the mov opcode originally written. These changes are, for our purposes,
not important; do a web search for movabs if you want to learn what the deal is.
What matters is that you not be surprised or distressed by these changes.

– What remains are the operands, and they are shown in a form that is clearly
different. Here, constants are shown with a $ prefix, and are in hexadecimal.
Additionally, register names are prefixed with the % symbol. These are merely
changes in assembly convention that, again, are not important for our purposes,
and merely need to be seen as normal. If you are curious about the difference,
you can read about the difference between difference between AT&T and Intel
assembly syntaxes.

Now let’s set a breakpoint, telling gdb where in the program to pause when it reaches
that point, and then run the program to reach that point:

5

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/X86_assembly_language#Syntax
https://en.wikipedia.org/wiki/X86_assembly_language#Syntax

(gdb) break _start
Breakpoint 1 at 0x401000
(gdb) run
Starting program: /home/yourusername/sysproj-1/hello

Breakpoint 1, _start () at hello.asm:18
18 mov rax, 1 ; rax gets the system call code for "write".
(gdb)

Now we can go through our program, one instruction at a time, seeing the registers
change and things happen:3

Starting program:
/home/staff/sfkaplan/systems/project-1/hello

Breakpoint 1, _start () at hello.asm:18
18 mov rax, 1
(gdb) si
19 mov rdi, 1
(gdb) p $rax
$1 = 1
(gdb) si
20 mov rsi, greetings
(gdb) p $rdi
$2 = 1
(gdb) si
21 mov rdx, 13
(gdb) p/x $rsi
$3 = 0x402000
(gdb) si
22 syscall
(gdb) p $rdx
$4 = 13
(gdb) si
Hello, World
24 mov rax, 60
(gdb) si
25 sub rdi, rdi
(gdb) si
26 syscall
(gdb) p $rdi
$5 = 0

3I have remove the code comments from the end of the lines of code shown here, since they wouldn’t
reasonably fit on the page.

6

(gdb) si
[Inferior 1 (process 19462) exited normally]
(gdb) quit

Note the following commands:

– si: Step forward one instruction. That is, run the next instruction and then
pause again.

– p $reg: Print, in decimal, the value of a given register, which name must be
(anomalously) prefixed with the $ character.

– p/x $reg: Print, in hexadecimal, the value of the given register.

– run: Although we used it above to get to the breakpoint, you could issue this
command at any point in the middle of the program, causing it to move forward
though the instructions without pausing until it reaches another breakpoint or
the process ends.

• Run it: Now that we see what’s happening inside, let’s just run it normally:

$./hello
Hello, World

Notice that, on the command line, you must use the prefix ./ on the executable file
name. That indicates to the shell that the program to be run is in this directory,
right here; the hello file in this directory should be loaded. Without that prefix, the
shell will look through a list of pre-set directories—the PATH environment variable—for
an executable file named hello; when it doesn’t find it will report Command not found.

• Change it: Open the hello.asm code in Emacs again. Change the message, mod-
estly, to something a little more lengthy and personal. “Working in hexadecimal is
cruel”, or whatever feels right to you.

Having changed it, go back and assembly, link, debug, and run the newly modified
version. Make sure it works. Then, commit/push your updated code to Gitlab:

$ git add hello.asm
$ git commit -m "Hello, with a modified message."
$ git push

Get into the habit of performing a commit/push of files that you modify. Each
modification is added to a history of updated that GitLab keeps, providing a backup
and the ability to jump back to previous versions if we need to do so.

7

4 Countdown
It is time to write (or, at least, complete) a slightly more interesting program. In your
terminal, open up the other file that you downloaded earlier:

$ emacs countdown.asm

You will see here a skeleton of a program. As its comment header explains the program is
supposed to do the following if it works properly:

$./countdown
9
8
7
6
5
4
3
2
1
0

Your assignment is to write the loop that counts down from 9 to 0, generating the
output along the way, as shown above. You should use all of the tools that you used on
the hello.asm program in order to assemble, debug, and ultimately run a correctly running
program. You will likely need to use the following opcodes that we have discussed (or will
discuss!) in class: sub, cmp, and je/jne.

8

5 How to submit your work
First, be sure that the most recent versions of your work have been committed and pushed
to the GitLab server.

Then, go to GitLab with your browser. Navigate to the sysproj-1 project. On the left
side of the page, click on Settings to reveal a drop-down menu, from which you should
select Members.

In this Project members window, under Invite member:

1. Under Select members to invite, enter sfkaplan. You will see me appear (Prof. Scott
Kaplan) as a user; select me. Also select

2. Under Choose a role permission, click the drop-down menu and select Developer.

3. Below, click the Add to project button.

This assignment is due on Sunday, Feb-11, 11:59 pm.

9

	x86 assembly code
	Getting started
	An already-written program
	Countdown
	How to submit your work

