COMPUTER SYSTEMS
PROJECT 2
Assembly procedure calls

1 x86 procedure calls

This project involves procedure calls, each of which uses the stack, although minimally so.
While not a comprehensive experience with method writing, it will make you familiar with
the form and capable of reading the assembly generated by a compiler.

Some things you are likely to need to know in order to write these procedures, building on
material covered during lectures:

o The call opcode: Call a procedure. The use of this opcode looks like this:
call some_procedure

When executed, it will do the following:

1. Push the return address: Allocate a word-sized space on the stack by decrement-
ing the stack pointer (rsp) by 8; and, copy the address of the next instruction
(based on the current instruction pointer (rip) into this space ([rspl).

2. Jump to the labeled address.

o SP pre-call alignment: The stack pointer (rsp) must be aligned on a double-word
boundary after a CALL instruction is performed. That is: rsp mod 16 = 0.

Since the call instruction pushes one word onto the stack itself, you may need to pad
the stack so that rsp will be aligned after the call completes. If you need to add such
padding, you can simply subtract the needed value from rsp, thus pushing the unused
space onto the top of the stack.

'Why a 16-byte alignment? 286 64 contains instructions that can operate on 16-byte values directly.
For those operations to succeed, the values would need to be placed started at 16-byte-aligned addresses. To
accomodate that possibility, and because we don’t want to ever assume what operations some other function
may employ, it is simply standard for all functions to leave the stack pointer double-word aligned after calls
and returns.


https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/assignments/project-2.pdf

o SP post-call alignment: If you add padding to the stack to allow alignment after a
call, then you need to remove this padding after the call returns. To do so, simply add
the same value to rsp—the number of bytes of padding—that you subtracted before
the call.

e The ret opcode: Return from a procedure. It doesn’t look like much...
ret

...... but it does a couple of important things:

1. Pop the return address: Grab the return address stored at the top of the stack
([rspl), then deallocate it (rsp <- rsp + 8).

2. Jump to the return address.

« Passing arguments: Arguments are passed into parameters first using six of the reg-
isters, and then (if there are more than six parameters) pushing additional arguments
onto the StaCk).E The registers are, in order:

arg #: 0, 1, 2, 3, 4, 5
reg: rdi, rsi, rdx, rcx, r8, r9

It’s a wacky order, but it is the standard for this instruction set architecture.
 Returning a value: The return value is placed in rax. Easy peasy.

o Preserving registers: There is a subset of registers that are callee preserved—that
is, when a procedure is complete and returns, the calling procedure should be able
to rely on the values in those registers being unchanged. Those registers are, in no
particular order:

rbp, rbx, ri12, ri13, ri14, rib

2Yes, this is different from what we described in class. This in the Linuz 86 64 calling convention,
whereas what we described in class was the C declaration (cdecl) calling convention. Both are used, and we
are choosing here to use the one that is standard for the system on which we’re coding our projects.

3These are the registers used for integers and pointers; if floating point values are passed, there is another
set of registers, xmmO to vmm7, for those. We won’t worry about floating point values in this course.



If your procedure uses any one of these registers, then you must preserve its original
value at the beginning of the procedure (by pushing its value onto the stack), and then
you must restore that original value éust before returning (by popping its value from
the stack and back into the register).

There are likely other things worth knowing, but these will, I hope, be helpful.

2 (Getting started

1.

6.

7.

Login to the server: Connect to the course server.
$ ssh USERNAME@systems.cs.amherst.edu

Login to GitLab: From your browser, login to
https://gitlab.amherst.edu

Start a new project: On the top toolbar of the GitLab window, click the little
drop-down menu marked by a plus-sign. Select New project.

Name and create the project: Set the Project name to be sysproj-2, and leave
the other default values. Click on the Create project button at the bottom.

Clone the repository onto the course server: Next, copy-and-paste the first two
commands shown under Create a new repository by GitLab in your browser.

$ git clone git@gitlab.amherst.edu:yourusername/sysproj-2.git
Cloning into 'sysproj-2'...

Enter passphrase for key '/home/yourusername/.ssh/id_rsa':
warning: You appear to have cloned an empty repository.

$ cd sysproj-2

Download the source code: After you download the files, use 1s -1 to list the
directory and see what you have.

$ wget -nv -i https://bit.ly/cosc-171-24s-p2
$ 1s -1

Add the source code to the repository:

4For this assignment, it is quite possible not to need to use any of these registers, thus avoiding this issue
entirely.


https://gitlab.amherst.edu

$ git add *

Notice that no news is good news. This command generates no output when ev-
erything goes correctly.

8. Commit and push the updated repository: First, commit the changes—the ad-
dition of the .asm files. Then, push this update to GitLab.

$ git commit -m "Starting code."
$ git push

You can go back to your browser and refresh the GitLab page. You should see the
source code files appear as part of the repository there.

3 An exponentiation procedure

Now open exp.asm with a text editor (e.g., Emacs). This is a completely written example
that we will go through during class. It shows exponentiation implemented both iteratively
and recursively. The C code for these functions would look something like this:

long exp_iterative (long x, long y) {
long total = 1;
while (y > 0) {
total = total * x;
y=y - L
b

return total;

3

long exp_recursive (long x, long y) {
if (y == 0) return 1;
return x * exp(x, y-1);

}
To try assemblying and running this code, do this:

$ make exp
$ ./exp

During class, we will discuss the make command and its input, Makefile.



4 A string-length procedure

In order to work with the remaining parts of this assignment, we must address some changes
to how we will write, assemble, and link our code.

Null-terminated strings: In the original hello.asm, we simply hand-calculated the
length of the message to be written to the console and passed that value to the WRITE
system call. However, the standard for assembly and C' programs is to use null-terminated
character arrays to represent strings. That is, a string is a sequence of characters that starts
at some given address (i.e., a pointer marks its beginning) and ends at the first zero-valued
character. Here, characters are byte-sized values, so the first null character (often written
as '\0') is the byte whose value is zero.

Notice, in the data section of our program, that the message is a string of characters,
followed by the newline character (10) and then followed by the null character (0). That
explicit zero value marks the end of the string. Without it, C' functions won’t know where
the string ends.

We will be writing an assembly function that calculates the length of null-
terminated strings.

Starting with main(): The C compiler, gcc has two basic jobs: first, it translates C' code
into machine code; and, then it links (using 1d) that object code with library code to form
an executable file. Libraries are collections of pre-written object code for procedures that a
programmer can call upon.

Part of the standard C' library code includes stub code—a pre-written _start quasi-
procedure that initializes the stack, calls the procedure named main(), and when that pro-
cedure returns, performs the EXIT system call. That is how, just as with Java, main() is
made the starting point of any C' program. When main() returns, the program then ends.

We can leverage this behavior of gcc without writing any C' code. Specifically, our assem-
bly programs can begin with a main procedure instead of _start. We then don’t have to
worry about performing the EXIT system call. Better yet, we will be able to call standard
C' procedures. If we want to print something to the console, instead of performing a WRITE
system call, we can call the C' procedure printf (). Doing so will allow us to print not just
static strings, but formatted strings into which numeric values are inserted.

You will therefore notice that neo-hello.asm begins with main, and that the main proce-
dure ends with a ret instruction.

5This first part of the assignment will use the old-fashioned WRITE system call, keeping things a little
more familiar. The second part will use printf ().


https://gcc.gnu.org/

A tester program in C: By writing our string-length-calculating function using the
standard Linux calling convention, we can write C code that calls on our assembly function.
Doing so makes it easier to create test cases for our function.

The C source code in tester.c is a simple main() function that calls the string_length
function that you wiill be writing, and then showing the results of its calculation. More on
this later.

Your assignment, Part I: writing string_length: Open string-length.asm, and
you will find the beginning of a function—the label, string length. You must write that
procedure.

Specifically, this procedure has one parameter—a pointer to a string—and it returns one
value—the length of that string. Write this procedure to count the number of bytes in the
string, using the zero-valued byte as the marker of the string’s end. Return the result in eax.

To test your code, use the C tester program, like so:
$ make tester

$ ./tester

Your assignment, Part II: calling string_length: Then open neo-hello.asm, in
which you will see an incomplete main(). Specifically, where shown in the comments, you
must write the steps to call string_length(). The result of your function call is then used
by the existing code to perform a WRITE system call.

To test this code:

$ make neo-hello
$ ./neo-hello

5 How to submit your work

First, be sure that the most recent versions of your work are up-to-date on the GitLab server
by performing an add/commit/push with git.

Then, go to GitLab with your browser. Navigate to the sysproj-2 project. On the left
side of the page, click on Settings to reveal a drop-down menu, from which you should

select Members.

In this Project members window, under Invite member:



1. Under Select members to invite, enter sfkaplan. You will see me appear (Prof. Scott
Kaplan) as a user; select me.

2. Under Choose a role permission, click the drop-down menu and select Developer.

3. Below, click the Add to project button.

This assignment is due on Sunday, Feb-18, 11:59 pm.



	x86 procedure calls
	Getting started
	An exponentiation procedure
	A string-length procedure
	How to submit your work

