
Computer Systems
Project 4

Fancier allocators

1 Preparing for mark-sweep garbage collection
For this project and the next one, we will be working with a best fit allocator. It keeps a
doubly linked-list of free blocks; when an allocation is requested, it searches that list for the
closest fit. In the absence of an acceptable free block, it pointer-bumps to expand the heap.

Part of the goal of this project is to understand a slightly more realistic allocator that reuses
deallocated blocks. A secondary goal is future-oriented: we will need an allocator suited to a
mark-sweep garbage collector—a kind of garbage collector that we will implement in Project
5. Thus, we will be modifying this best fit allocator to prepare it for use in the next project.

2 Getting started
2.1 Creating the repository

1. Login to the server: Connect to the course server.

2. Login to GitLab: From your browser, login to
https://gitlab.amherst.edu

3. Start a new project: On the top toolbar of the GitLab window, click the little
drop-down menu marked by a plus-sign. Select New project. Set the Project name
to be sysproj-4, and leave the other default values. Click on the Create project
button at the bottom.

4. Clone the repository onto the course server:

$ git clone git@gitlab.amherst.edu:yourusername/sysproj-4.git
$ cd sysproj-4

5. Download the source code: After you download the files, use ls -l to list the
directory and see what you have.

$ wget -nv -i https://bit.ly/cosc-171-24s-p4
$ ls -l

6. Add/commit/push the source code to the repository:

$ git add *
$ git commit -m "Starting code."
$ git push

1

https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/assignments/project-4.pdf
https://gitlab.amherst.edu


2.2 Compiling and running
This collection of code works identically to the code from Project-3. To compile the pieces:

$ make clean
$ make libbf memtest

Then, to run memtest (or anything else) with your allocator code, and then turn off your
code:

$ export LD_PRELOAD=${PWD}/libbf.so
$ ./memtest
$ unset LD_PRELOAD

3 Your assignment
3.1 Part I: Commenting the code
Open bf-alloc.c. Its basic structure matches that of pb-alloc.c from the previous project.
There are some key differences, including the definition of the header_s, which now contains
additional fields for organizing each block.

Notice that malloc() and free() are devoid of comments. Comment these functions,
providing a guide to any reader of the code as to what is happening in each group of lines.
As before, you may collaborate freely with others in figuring out the code and writing these
comments.

3.2 Part II: Make it align
This allocator does not provide double-word aligned blocks in the way that it should. Port
your code from Project-3, making the blocks that are created by pointer-bumping be
properly aligned. Note that the contents of the headers may be different in this allocator,
so be sure that your alignment code will work with that change.

3.3 Part III: Create an allocated list
For the initial, downloaded code, blocks are only ever linked into a free list; that is, when a
block is allocated, it isn’t on a list at all; the caller to malloc() is responsible for keeping
track of the block until it calls free() to return the block to the allocator. Under explicit
memory management, this is the normal state of affairs.

A garbage collector, however, must be able to find all the allocated blocks in order to
determine which are live (still usable by the program) and which are dead (no longer usable).
In preparation of using this allocator as part of a garbage collector, modify this best fit
allocator to keep a linked list of allocated blocks. When a block is allocated, add it to
this list; when freed, remove it from this list before adding it to the free list.

2



3.4 Part IV: Test your code
Modify the testing program, memtest, to do some allocations, deallocations, and reallo-
cations. Make sure that it still works properly with all of your code changes.

4 How to submit your work
First, be sure that the most recent versions of your work are up-to-date on the GitLab server
by performing an add/commit/push with git. Then, go to GitLab with your browser, and
add me (sfkaplan) as a Developer to your repository.

This assignment is due on Sunday, Mar-03, 11:59 pm.

3


	Preparing for mark-sweep garbage collection
	Getting started
	Creating the repository
	Compiling and running

	Your assignment
	Part I: Commenting the code
	Part II: Make it align
	Part III: Create an allocated list
	Part IV: Test your code

	How to submit your work

