
Computer Systems
Project 6

Implementing a simulated MMU

1 Simulating virtual memory
Virtual memory is typically implemented within the operating system kernel (which main-
tains page tables and handles page faults), and with the support of the memory management
unit (MMU) in hardware (which uses the page tables to translate virtual addresses to phys-
ical addresses). We want to experiment with the implementation of this abstraction, but
modifying real kernel code is fraught—its code is large and deeply complex, and any errors
in the kernel can be exceedingly difficult to diagnose. Therefore, working within the kernel
is not desirable for our first encounter with virtual memory mapping.

Instead, we will use a simulated virtual memory abstraction. We will use programs that
allocate and use addresses that are virtual, and mapped to different addresses within a
region of the program’s memory. Our project will be to write a simulated MMU that
performs the translation—the mapping—of those addresses.

1.1 Simulated and real spaces
In order to avoid confusion (and perhaps risking the creation of more confusion), we will
not use the terms virtual and physical to describe the memory that we are managing in this
project. For the kernel and MMU, the main memory (RAM) is literally physical, making
the space used by each process virtual. The spaces managed in this project are different,
although analagous. Specifically, our code will be creating two memory spaces:

Real: A single, contiguous block of memory allocated within the process and managed by
our code. The size of this real memory is determined when the process begins, and
may vary from one run to the next. This space is analogous to the physical memory
managed by the kernel/MMU, where the size of RAM is determined when the system
boots.

Simulated: The space used by our process, but whose addresses are mapped to real addresses by
our simulated MMU. The size of this memory appears to be as large as the address
space, and pages are mapped to underlying real memory as they are used. This space
is analogous to the virtual memory provided by the kernel/MMU, where the size of
the abstracted space is constant, and not tied to the size of the underlying memory.

In short, we will use programs that store data into, and retrieve data from, simulated
addresses. However, those addresses will be translated automatically (by our code) to real
addresses, at which the given data will really be stored.

1

https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/
https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/assignments/project-6.pdf


2 Getting started
In the usual way, create a new GitLab repository and grab the starting code…

1. Login to the server via ssh.

2. Login to GitLab in your browser.

3. Start a new project: Set the Project name to be sysproj-6.

4. Clone the repository onto the course server:

$ git clone git@gitlab.amherst.edu:yourusername/sysproj-6.git
$ cd sysproj-6

5. Download the source code:

$ wget -nv -i https://bit.ly/cosc-171-24s-p6
$ ls -l

6. Add/commit/push the source code to the repository:

$ git add *
$ git commit -m "Starting code."
$ git push

2.1 The vmsim library
To make it possible for programs to use simulated memory, our code will be contained within
a library—a pre-written collection of functions that other code may use.1 This library will
create the real memory, create and maintain a page table of mappings from simulated to real
addresses, and translate the simulated addresses into real ones on demand.

The interface: The vmsim library provides the following functions:

• void vmsim_read (void* buffer,
vmsim_addr_t sim_addr,
size_t size)

Read size bytes from a simulated address (sim_addr) into the buffer.

1We have used this idea for our heap allocators, e.g., libpb and libbf. A library provides existing
functions and provides an interface for calling those functions, much as a Java class contains pre-written
methods and public methods that other code can call.

2



• void vmsim_write (void* buffer,
vmsim_addr_t sim_addr,
size_t size)

Write size bytes from the buffer to a simulated address (sim_addr).

• void vmsim_read_real (void* buffer,
vmsim_addr_t real_addr,
size_t size)

Read size bytes from a real address (real_addr) into the buffer. This function
should not be called by normal programs using the vmsim library; but it does need
to be called by the simulated MMU in order to access the real memory space.

• void vmsim_write_real (void* buffer,
vmsim_addr_t real_addr,
size_t size)

Write size bytes from the buffer to a real address (real_addr). This function should
not be called by normal programs using the vmsim library; but it does need to be
called by the simulated MMU in order to access the real memory space.

• vmsim_addr_t vmsim_alloc (size_t size)
Allocate a block of at least size bytes of simulated space. A simulated address is
returned.2

• void vmsim_free (vmsim_addr_t sim_addr)
Deallocate the block of simulated memory at sim_addr. This block must have been
allocated using vmsim_alloc().

The vmsim library also defines the following types:

• vmsim_addr_t: A 32-bit unsigned integer that stores a single simulated or real address.

• pt_entry_t: A 32-bit unsigned integer that stores a single page table entry. (See
Section 3 for more information on the vmsim page tables.)

2A program is not required to use this allocator to obtain simulated memory—it may simply use any
simulated address—but the allocator may be useful to for imposing an organization on the simulated space.

3



Writing a program to it: Included in the vmsim directory are a pair of programs that
use simulated memory and rely on vmsim to provide it. Here, we will examine the code in
iterative-walk.c.

First, notice the inclusion of the library’s header file, vmsim.h. This file (which you can
open and examine) provides the declaration of the types, constants, and functions that can
be called. The #include directive must be used in any program that uses vmsim.

Second, notice in the functions populate() and traverse() how the vmsim_read() and
vmsim_write() functions are used. Let us take, as an example, the following lines:

uint64_t current;
vmsim_read(&current, addr, sizeof(current));

We create a space, current, that holds a 64-bit unsigned integer (uint64_t). We then
call the vmsim_read function, passing it the following information:

• &current is a pointer to the space of that name. That is, the ampersand (&) is the
reference operator in C ; it is the inverse of the more familiar dereference operator (*).
Instead of passing the value of current itself, we are passing a pointer to the space
named current.

• addr is a simulated memory address (determined by code that precedes this example).

• sizeof(current) is the number of bytes in the space named current. Given that
current is a 64-bit value, the value passed here is 8.

The result of this call is that the 8 bytes stored starting the simulated address addr are
copied in current itself. By writing code the reads bytes from and writes bytes into the
simulated space, we can use that simulated space to store arbitrary data.3

Compiling and running: In order to compile vmsim and the test programs that use it
(iterative-walk and random-hop), use the make command, simply, like so:

$ make

This command reads the Makefile (which you can examine) in order to know how to
compile the pieces of this project. Learning how to use this command is highly recommended,
so Google for make command tutorial, or just start with this seemingly decent tutorial on
it.

You will see that make compiles vmsim to create libvmsim.so (a shared library), then
compiles and links the two test programs. Once the make command is done, you will also
have two executable files, one each for the test programs. If you try to run, say, random-walk,
you would invoke it like so, but see the following error:

3This approach to reading and writing data is not elegant, but it is the price we pay for defining and
implementing the simple vmsim interface. This interface is quite like the one used for reading data from and
writing data to files using standard file system functions.

4

https://opensourceforu.com/2012/06/gnu-make-in-detail-for-beginners/
https://opensourceforu.com/2012/06/gnu-make-in-detail-for-beginners/


$ ./random-hop
./random-hop: error while loading shared libraries:
libvmsim.so: cannot open shared object file:
No such file or directory

What does that error message mean, and how do you fix it? Any interesting program
depends on library functions. Most of these libraries, such as the standard C library (known
as libc) are stored their own set of pre-determined directories. The compiler and the shell
use these directories automatically to find and link the correct libraries to a program when
it runs.

Our test programs use libvmsim, which is not a standard library in one of thse pre-
determined directories. We have to set an environment variable so that shell can find
libvmsim, which is also within our current directory. Thus, we need first to use the fol-
lowing command (and we need to use it only once):

$ export LD_LIBRARY_PATH=${PWD}

This command sets the environment variable named LD_LIBRARY_PATH to include the cur-
rent directory. Once we have done so, we can run one of the test programs:

$ ./random-hop
$ USAGE: ./random-hop <space size (bytes)>
$ ./random-hop 100000

This little program randomly selects simulated addresses from 0 to (in this case) 100,000.
At each address, if the value is 0, the value is then set to 1; if the value is already 1, then
the program ends, reporting the number of addresses is visited. However, this program
won’t work properly. Initially, the MMU always returns the real address 0; the mapping
of simulated to real address has not yet been properly implemented. That leads us to
Section 3…

3 Writing the MMU
Your task is to implement the simulated MMU, making it translate simulated addresses to
real ones using page tables created and managed by other vmsim code. Before you do that,
though, in Section 3.3, there are things you need to know about the page tables and how to
manipulate their entries in C.

3.1 Address and page table format
Page tables and address spaces for vmsim mimic the format used for the 32-bit Intel ia32
(a.k.a., x86) ISA. Specifically, addresses are 32-bits each, with those bits divided as follows:

• [31-22]: The most significant 10 bits of each address are the upper page-table index.

5



• [21-12]: The next 10 bits of each address are the lower page-table index.

• [11-0]: The least significant 12 bits of each address are the byte offset within the page.

Each block of the multi-level page table is 4 KB that contain 1,024 entries each. Thus,
for a given simulated space, there is a single upper page-table (UPT), stored at some real
address. For a given address, the UPT index specifies one entry (210 = 1, 024) in that UPT.
That entry contains the real address of a lower page-table (LPT). The LPT index specifies
one entry within the LPT.

The contents of the LPT entry is the real address of a page—that is, the page to which
the simulated address’s page number is mapped. If the real page’s address is combined with
the 12 offset bits, the result is a specific byte address, in the real address space, to which the
simulated address maps.

3.2 Handy bit-manipulation operators in C
Given a 32-bit value that needs to be decomposed as described above, in Section 3.1, how
do you isolate and use each component? To do so, you need to use the bitwise operators,
which allow you to manipulate values at the bit level. Here is a listing, where you should
assume that x and y are such a 32-bit unsigned integer values.

• x >> y (shift right): Shift the bits of the value in x to the right by y positions, inserting
y 0 values at the most significant positions.

• x << y (shift left): Shift the bits of the value in x to the left by y positions, inserting
y 0 values at the least signficant positions.

• ~x (bitwise logical not): Invert the bits, making each 0 into a 1, and each 1 into a 0.

• x & y (bitwise logical and): For each pair of bits at each position in x and y, perform
the logical and operation.

• x | y (bitwise logical or): For each pair of bits at each position in x and y, perform
the logical inclusive or operation.

• x ^ y (bitwise logical xor): For each pair of bits at each position in x and y, perform
the logical exclusive or operation.

Used together, these operations allow you to isolate any group of bits in a value. For
example, in order to isolate the offset bits of an address, we can do the following:

uint32_t offset = addr & 0xfff;

First note that the constant 0xfff is 20 0’s, followed by 12 1’s, composing a complete
32-bit value. The 1’s are all in the positions associated with the offset in the address. This
constant is being used as a bit mask—a special value used to isolate some bits of a value.
By applying this bit mask to addr with the bitwise and operator, we achieve two things:

6



first, the upper 20 bits of the result must be 0 (since any value and 0 = 0); second, the 12
lower bits of the result will be a copy of those lower bits in addr (since any value and 1 =
itself). And thus, we keep the lower 12 bits and clear the upper 20, giving us exactly what
we wanted—the offset of the address is isolation.

3.3 Where to write your code
Open mmu.c in order to get started in earnest. You will see that very little is defined. The
module variable upper_pt_addr is declared and, via a call to mmu_init() (which is called
from within vmsim), set. This variable contains the real address of the upper page-table that
the MMU should use.

You will also see the mmu_translate() function. Your task is to fully implement this
function. It is passed a simulated address, and your code should traverse the page tables
in order to translate that simulated address into a real address. That real address is what
mmu_translate() must return.

It is important to note that the page table, initially, is composed solely of the UPT. All
of the 1,024 entries of the UPT are 0, and no LPT’s exist. Thus, the MMU must handle all
three of the following possibilities as it tries to translate sim_addr:

1. UPT[upper_index] = 0: There is no LPT to which the address’s UPT entry leads.
Call vmsim_map_fault() and then re-attempt the translation.

2. UPT[upper_index] != 0 && LPT[lower_index] = 0: There is no real page to which
the address’s LPT entry leads. Call vmsim_map_fault() and then re-attempt the
translation.

3. UPT[upper_index] != 0 && LPT[lower_index] != 0: The is a real page backing
this simulated page, so complete the real address with the address’s offset bits and
return it.

Notice that vmsim_map_fault() is already written to update the page table to ensure that
a given simulated page is properly mapped to some real page.

3.4 How to test your code
Once you have attempted to write mmu_translate(), you should compile it with the make
command and run either of the test programs. However, it is deeply likely that you will have
bugs with which to contend. What to do?

First, add some debugging output to your MMU code. What simulated address is being
passed? What are the upper and lower indices being extracted? What happens when your
code tries to look up the UPT and LPT entries? If vmsim_map_fault() is called, then what
happens when your code tries the translation again?

7



Second, use the source level debugger gdb. Set breakpoints in your MMU code and step
through it. Is it behaving as you expected? Do you actually know what you expect? Are
the values in the page tables what you expected?

Third, write your own test program. Write something even simpler than the two provided—
one where you know exactly what should be stored in a simulated space and then read back
from it. Add your debugging code to that simple test program.

In short, poke and prod the behavior of the code and figure out what is going on. Good
luck!

4 How to submit your work
First, be sure that the most recent versions of your work are up-to-date on the GitLab server
by performing an add/commit/push with git. Then, go to GitLab with your browser, and
add me (sfkaplan) as a Developer to your repository.

This assignment is due on Sunday, Apr-07, 11:59 pm.

8


	Simulating virtual memory
	Simulated and real spaces

	Getting started
	The vmsim library

	Writing the MMU
	Address and page table format
	Handy bit-manipulation operators in C
	Where to write your code
	How to test your code

	How to submit your work

