
Computer Systems
Spring 2024

Course Information
Prof. Kaplan

Be sure to read all of this document!

1 Introduction
What is this course about? When you learn how to program, you use a complex set
of existing tools to compile and run the code that you write. What are those tools? How
does the code you write get carried out? Even the simplest of programs (e.g., Hello World)
triggers a number of complex mechanisms to complete its task.

This course seeks to reveal how a general-purpose computer system can execute the pro-
grams you write (and those that others write). The design and implementation of this type
of system requires a thoughtful structuring of a number of layers of abstraction, each of
which simplifies programming and handles complex problems automatically. The goal of a
computer system is to enable programmers to solve their problems. That is, the programmer
should be able to concentrate on the problem at hand, and not have to worry neither about
the details of what the underlying system is doing, nor how it is doing it.

Why do systems matter? When you write a program for a “regular” system (e.g., your
laptop running a typical operating system), do you really need to know how that program-
ming language and operating system work? I can drive a car without being an auto mechanic,
so why is it important to know how computer systems work?

No abstraction is perfect. In using any programming language and system, you are rely-
ing on a great deal of structure whose behavior may affect how your code behaves in ways
you don’t expect. Whether you’re working in cryptography, graphics, AI/machine learning,
databases, or just about any other computing area, you will work with code that relies on
some system. At some point, your code will not behave the way you expected. It will be slow,
or consume too much memory, or exhibit strange bugs, and thus become an obstacle to the
work you are trying to do.

In those moments, understanding how the system is structured, and understanding how
the layers of the system interact with one another, is essential to determining what is wrong
and how to fix it. A strong familiarity with these topics not only allows you to fix misbehav-
ing or broken code, but also allows you to structure it correctly in the first place. Perhaps
even more importantly, knowing how systems are structured can make clear why elements
of a system or language are structured the way they are. Holding in mind the interior logic
and design of any system layer improves your ability to use it effectively, and to create your
own layers.

1

https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-171/
https://sfkaplan.people.amherst.edu
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program


And if you want to be a master hacker, knowing how to intentionally misuse abstractions
and implementations within a system is the name of the game.

How will the course progress? We will start at a low level—individual processor in-
structions—and build our way, layer by layer, to full individual systems, and then modern
distributed and cloud layers that allow programs to use the massive computational and mem-
ory capacity of many computers. Along the way, we will see repeated problems and themes
that recur at many levels. We will also address the problem of measuring and comparing sys-
tems for various characteristics (e.g., speed). By the course’s end, although you will hardly
know every detail of a computer system, you will have enough experience to learn about and
reason through the details of any system and its various layers.

2 The topics
The basic topics are given below, roughly in the order that will we cover them. If you have
no idea what some (or many) of them are, don’t be alarmed—that is why you’re taking this
course, after all.

• Instruction set architectures: Programming to the processor’s circuits.

• Caching and the memory hierarchy: How are programs and their data stored to
maximize performance?

• Allocators and garbage collectors: What happens when a program needs more
memory? And then doesn’t?

• Operating systems and runtime libraries: Programming to large collections of
pre-made code.

• Virtual memory: How can multiple programs share the computer’s memory without
clobbering one another?

• File systems: How can data be stored for later?

• Virtual machines: Wheels within wheels…

These topics are what we directly will be covering, but underlying it all will be the concepts
of interface, abstraction, implementation, and resource allocation. As we move from topic to

2



topic, I will come back to this bigger picture to highlight these recurring themes.

This course will be project-intensive. Much of the material will seem easy enough to com-
prehend when presented in class, but the only way to understand this material thoroughly
is to use it. In this case, using these ideas requires that you understand an existing im-
plementation of a layer, and then modify or enhance it. Your projects will require you to
understand existing code before you then write your own.

3 Lectures, labs, and help
Lecture/discussion times: Our class meetings will be in SCCE A131, TTh from 2:30
pm to 3:50 pm. You are expected to be present for all class meetings. I will not teach
material twice, so if you miss a class meeting, then you’re on your own for whatever material
was covered that day.

Individual meetings (a.k.a., office hours): If you seek assistance, reinforcement, re-
view, or other opportunities to discuss the course material or assignments, you should see
me. There is a link on the course web page for scheduling a time to meet. I encourage you
to use these hours to delve deeping into the material and the projects; chatting with me
outside of class is one of the reasons you came to a small college.

TA help sessions: There will also be TA help sessions. The time and location will be
scheduled and announced before the semester begins.

Slack channel: We will make regular use of Slack. You will be added to the #cosc-171-S24
Slack channel, where you will be able to send questions directly to me, to TA’s, or for the
whole class to see. It will also be the mechanism by which I distribute announcements
quickly, send files/documents that may be immediately helpful, and try to keep a running
sequence of questions and answers.

Email: Many questions and issues are best addressed via the asynchrony of email, so
feel free to contact me at sfkaplan@amherst.edu with your questions or concerns. Be
forewarned, however, that I do not typically respond to email quickly, so do not expect a
quick turnaround. For a quicker response, Slack is likely to be better.

4 Texts and materials
The textbook for this course is, Computer Systems: A Programmer’s Perspective, 3rd edi-
tion, by Byrant and O’Hallaron.1 All other tools for this course—all of the software and
documentation—will be provided. We will not work directly out of this text, but it does
provide a good presentation and reinforcement of many of the topics that we will cover.

1ISBN-13: 978-0134092669

3

https://amherstcollege.slack.com
mailto:sfkaplan@amherst.edu
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/


5 Assignments, deadlines, and extensions
There will be a number of programming projects. The deadline for each will be stated clearly
on the assignment. These projects will be assigned in a continuous sequence, so it is impor-
tant to stay up-to-date and working on the current assignment. Late submissions may
receive failing grades. Turn in what you have, and do so on time.

An extension for any assignment must be requested, in writing (email counts as writ-
ing), at least 48 hours prior to the deadline. The determination as to whether or not
a particular situation merits an extension will be made on a case-by-case basis. Scheduled
events are not sufficient reason to warrant an extension. Rather, extensions are intended
for unusual circumstances that prevent you from planning your time well in order to meet
the deadline. Note that a sudden onset of illness or other emergency situation that occurs
less than 48 hours before a deadline will be treated as a special case.

6 Exams
There will be one mid-term exam given during a regular class lecture hour; there will also
be a comprehensive final exam given during the final exam period at the semester’s end.
The mid-term exam will be given during week 7 of the semester (with the specific day of
that week to be announced); the final exam will be self-scheduled.

7 Grading
Your final grade will be chosen by my evaluation of how well you have mastered the course
material at the semester’s end. All of the work that you submit, as well as your participation
in class, contributes to my impression of that mastery.2

8 Academic dishonesty
You will be expected to do your own work on all assignments and exams in this course. While
I encourage you to interact with your classmates and discuss the material and assignments,
there is a limit to the specificity of such discussions. I seek to make that limit clear here.

It is acceptable to discuss any assignment for the class with a classmate. You may even
discuss your approach to a particular problem, or review relevant material for a problem
with another person. However, you may not show another student your work, nor
see another student’s work. If in doubt, ask me. If you are unusure whether or not

2This description of the grading policy makes some students break out in a flop sweat. Don’t panic. The
intent is for me to allow you to show, however you show it best (i.e., through projects vs. exams), your
grasp of the material. Rather that try to invent a formula that captures that flexibility, it is more direct and
honest to state that I will be looking for your depth of understanding and capability with the topics, and
your grade will reflect what you’ve shown.

4



a particular kind of communication would rise to the level of academic dishonesty, then you
should contact me immediately and find out.

5


	Introduction
	The topics
	Lectures, labs, and help
	Texts and materials
	Assignments, deadlines, and extensions
	Exams
	Grading
	Academic dishonesty

