
Operating Systems — Project 0
Completing a BIOS

1 Overview and motivation
This project will begin your work with Fivish, our (mostly) RISC-V-based assembler and
system simulator. The goal is to get working with these tools and see a small group of sample
assembly programs. The real work, though will be in the BIOS; it is mostly written, but
you will need to complete it.

2 Getting started
2.1 System requirements and options
The Fivish environment requires Java, bash1, and some typical UNIX-based command-line
tools (e.g., make, dd, etc.) These are tools that you can install (if needed) and use on your
own computer, but I leave that as a project/adventure for you to explore, perhaps with your
fellow students. If you don’t have these tools, I recommend that you use ssh to connect
to systems.cs.amherst.edu, which already has them. If you choose to do your work on
this server, I recommend installing an X11 server on your computer—XQuartz on macOS,
cygwin with X11 packages on Windows. Talk to me if you want to try this, but it will be a
bit of an adventure of its own.

Expect to work significantly on the command-line and with fundamental text/code editors.
Specifically, vim, emacs, Sublime Text, even Notepad++ are reasonable options for editing
code. Maybe VSCode—maybe. Do not expect to use IDE’s like Eclipse or IntelliJ ; most of
your work will be in assembly and, later, a language that these IDE’s won’t recognize and
can’t work with.

2.2 Getting Fivish
On whatever system your using, use git to checkout a copy of the assembler and simulator:

$ git clone git@gitlab.amherst.edu:sfkaplan/fivish.git

You should see two directories in this repository: assembler and simulator. Change into
each directory in turn, building the source code:

$ cd fivish/assembler
$ make
$ cd ../simulator
$ make
$ cd ..
1The Bourne Again Shell that is common to Linux, macOS, etc.

1

https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-277/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)


2.3 Getting the project source
Download the source assembly files:

bit.ly/cosc-277-p0

You can download and then unpack the source files from the command-line like so, and
then take a look at the files.

$ wget -i https://bit.ly/cosc-277-p0
$ tar -xJvpf project-0.tar.xz
$ cd project-0
$ ls
bios.asm conditional.asm do-nothing.asm find-max.asm loop.asm

The latter four files are small assembly examples of basic programming constructs that we
will go over in class. The bios.asm file is where you will do your real work.

2.4 Assembling and running
As an example, we can use the do-nothing.asm code to see how to use the assembler and
the simulator. First, open the source code in your favorite text editor; you will see that this
little program loads a couple of constants into registers, and then it halts the processor.

To assemble this program, do the following:2

$ cd ../assembler
$ ./assemble ../project-0/do-nothing.asm

You should see the output of the assembler, which shows how each line of code is interpreted
and translated into machine code. There should also be, in the project-0 directory, a file
named do-nothing.vmx that contains the actual RISC-V machine code. We can now try
running this code in the simulator:

$ cd ../simulator
$ ./simulate ../project-0/do-nothing.vmx
[...]
[pc = 0x00009000]: step 10

You will see the processor carry out the instructions of the program (which actually takes
fewer than 10 steps, but the halted processor ignores the request for any additional steps).
You can match these steps to what the assembler showed. You can also examine the registers
used to see that they contain the desired values, and then exit the simulator.

2These instructions assume that your project-0 directory is in your fivish directory, alongside the
assembler and simulator directories. Adjust as needed.

2



[pc = 0x00009018]: showregister a0
a0 = 0x0000000d
[pc = 0x00009018]: showregister a1
a1 = 0x1a2b3c4d
[pc = 0x00009018]: exit

Congratulations! You have used our little system. Now try the other sample programs and
make sure that you see how they work.

3 Your assignment
Your goal with this assignment is to complete, in assembly, the code needed to bootstrap
our simulated, hard-disk-less system. Much of this BIOS is written, but it lacks one critical
portion of its code that you must fill in. So, to complete this assignment, you must:

1. Grok: Read the code already in bios.asm and grasp, to the greatest extent possible,
what it does and how it does it. I recommend also writing down questions about parts
you don’t fully understand, and then asking about them. As a broad outline, here’s
what the BIOS, when complete, must accomplish:

(a) Find the RAM in the physical address space.
(b) Find the second ROM in the physical address space. Both your BIOS and users

of it assume that this second ROM is the kernel.
(c) Copy the kernel (2nd ROM) into main memory (RAM) [see Complete, below].
(d) Jump to the copied kernel’s first machine code instruction.

2. Complete: You will find, in a procedure named _procedure_copy_kernel, an in-
complete chunk of code (clearly marked with comments). This portion of the code
must perform the actual copying of bytes from the kernel ROM and into RAM.

Notice that you must, for now, use a dummy kernel. Since we have not yet written any
part of a true OS kernel, then any executable image (e.g., do-nothing.vmx, assembled from
the provided do-nothing.asm) will suffice.

4 How to submit your work
Instructions forthcoming! You will be sending me, one way or another, your complete
bios.asm file. I’ll post details on what mechanism to use for this task.

This assignment is due at 11:59 pm on Sunday, February 11th.

3


	Overview and motivation
	Getting started
	System requirements and options
	Getting Fivish
	Getting the project source
	Assembling and running

	Your assignment
	How to submit your work

