
Operating Systems
Fivish system documentation

1 Overview
The Fivish system is an implementation of subset of the RISC-V instruction set architecture
(ISA) designed for undergraduate projects in operating system (OS) design and implemen-
tation. This document presents the Fivish assembler and system simulator, including the
use of its various devices (e.g., console, block device).

2 The Fivish/RISC-V ISA
Fivish mostly implements the RISC-V RV32I v2.0 instruction set with the “M” extensions
and standard pseudo-instructions. To see these more formally defined, see the RISC-V in-
struction set manual, particularly Chapters 2, 6, and 20.

There are small ways in which it does not fully implement the standard. Specifically,
there are common assembly forms and macros that the Fivish assembler does not offer;
similarly, the assembler implements some of its own macros to make the management of
two-instruction sequence handling of 32-bit constants cleaner. These variations should alter
the writing of RISC-V assembly only a little. Likewise, the Fivish CPU and system sim-
ulator uses a nonstandard arrangement of control and status registers (CSRs). While the
instructions opcodes and formats are the same, the details of how those privileged registers
are organized and used is specific to Fivish.

We lay out here the details of the Fivish assembler and system simulator, relying heavily
on the ways in which it mostly uses the standard RISC-V ISA.

3 Control and status registers
The CSR set of the Fivish simulator is a group of address that controls and behavior of the
processor (and the simulator). These are not the standard set of RISC-V CSR’s; they are
specific to RISC-V. Nonetheless, they can be accessed via the standard CSR instructions
(Section 2.8 of the RISC-V instruction set manual).

Here is the enumerated list of registers which are accessed by the CSR instructions by
number:

0. pc: The program counter, which points at the current machine code instruction

1. md: The mode register, whose bits reflect and control the state of the processor. Specif-
ically, the bits (starting from the 0th, or least significant bit) are:

1

https://sfkaplan.people.amherst.edu/courses/2024/spring/COSC-277/
https://riscv.org/
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

• Bit 0—halted: 0 when the processor operates normally; 1 when it no longer
fetches, decodes, and executes an instruction.

• Bit 1—user: 0 when the processor is in supervisor mode; 1 when it is user
mode.1

• Bit 2—virtual: 0 when physical addressing is used; 1 to enable the memory
management unit to perform virtual address translation.

• Bit 3—paged: 0 to have the MMU perform additive base/limit address transla-
tion; 1 to direct the MMU to use paged translation.

• Bit 4—alarm: 0 the alarm register (al) is ignored; 1 to generate a CLOCK_ALARM
interrupt (see Section 4) whenever the clock register (ck) equals al.

2. tb: The trap base register, which points to the trap table used upon an interrupt by
the processor to vector to a handler function. (See Section 4.2.)

3. epc: The environment program counter, which contains a copy of the pc at the moment
an interrupt triggers a vector into the kernel; it is also the source register for the eret
instruction.

4. eai: The environment auxiliary information, which stores additional information
about the event that triggers an interrupt (e.g., the address that cause an INVALID_ADDRESS
interrupt.

5. bs: The base register stores the base address used by the MMU when the processor’s
mode indicates user mode with virtual, non-paged address translation.

6. lm: The limit register stores the limit address used by the MMU for user mode with
virtual, non-paged address translation.

7. pt: The page table register points to the upper-level page table used by the MMU for
address translation when in paged virtual mode.

8. ck: The clock register counts instructions completed.

9. al: When alarm mode is enabled, this register is compared to the ck register, such
that al == ck triggers a CLOCK_ALARM interrupt.

10. bp: The breakpoint register is compared to the pc, and when bp == pc, an EBREAK
interrupt pauses the simulator.

11. wp: The watchpoint register points to a memory location that, when accessed by the
CPU, triggers an EBREAK interrupt to pause the simulator.

12. db: The debugging level register is used by the simulator to control the level of the
debugging output generated.

1RISC-V defines addition permission levels, but Fivish only implements these two.

2

4 Interrupts
4.1 Codes
For a kernel to establish control of the CPU and the hardware overall, it must establish its
procedures as the ones to call when CPU interrupts occur. Fivish enumerates the following
interrupts:

0. INVALID_ADDRESS: Some operand specified a memory address that is invalid. Typically
used when an invalid or impermissible virtual address cannot be translated.

1. INVALID_REGISTER: Some operand specified a register number that is invalid.

2. BUS_ERROR: An operand provided an address that yielded an address on the bus that
was invalid. The bus may have received an address for which there is no responding
device, or the bus may have refused to process a misaligned address.2

3. CLOCK_ALARM: A periodic alarm generated when the cycle counter matches the alarm
register.

4. DIVIDE_BY_ZERO: Occurs when one of the arithmetic division instructions receives a
denominator operand whose value is zero.

5. OVERFLOW: Occurs when a signed arithmetic operation yields an overflowed result.

6. INVALID_INSTRUCTION: If an instruction contains an invalid opcode, or if an operand
has invalid status bits, then this interrupt occurs.

7. PERMISSION_VIOLATION: A supervisor-only instruction was issued while the processor
was in user mode.

8. INVALID_SHIFT_AMOUNT: When one of the arithmetic shift instructions is used, the
number of bits to shift can be no more than the word size.

9. SYSTEM_CALL: A special case of the INVALID_INSTRUCTION interrupt reserved for the
use of a particular invalid opcode used for system call vectoring.

10. SYSTEM_BREAK: Like a system call, except this interrupt is not handled by the kernel;
instead, it is received by the simulator itself, which pauses its processing to present its
own command prompt.

11. DEVICE_FAILURE: When a device cannot complete an operation because of unexpected
internal failures (e.g., a storage device that cannot access its memory successfully), it
raises this interrupt.

2A 32-bit system will expect any request for a word-sized value (e.g., not a COPYB instruction) to be
word-aligned—that is, the address A, given 4-byte words, should satifying the property that A%4 ≡ 0.

3

4.2 Vectoring
When an interrupt occurs, the processor performs a specific sequence of steps:

1. Elevate mode: Set the processor into supervisor mode by clearing the user bit in
the md register.

2. Preserve state: Copy the pc into the epc CSR; also store any auxiliary information
about the interrupt (e.g., the address that triggered an INVALID_ADDRESS interrupt)
into the eai CSR.

3. Vector to interrupt handler: The processor uses the interrupt code to find the
corresponding handler procedure. Specifically, the trap table is an array of pointers to
the entry points of interrupt handler procedures. The processor looks up the correct
entry in this table by calculating …

te = tb + c|w|

…where te is the address of correct trap table entry, which is obtained from the trap
base tb (from the tb register), the interrupt code c, and the word size |w| = 4, in bytes.
In short, the interrupt code is an index into the array of word-sized addresses.

To complete the jump, the processor sets pc to the value found at address te.

5 The assembler
Fivish assembly is primarily RISC-V assembly, so we refer you to documentation on that
standard ISA to see how operations, addressing, registers, labels, etc., are expressed. What
follows are the Fivish-specific elements of its assembly language.

5.1 Mode change markers
There are four assembly modes:

1. Preamble: The assembler begins in this mode, processing only comments while wait-
ing for a mode change to specify another mode.

2. Code: The primary mode that you will use, in which you can list the sequence of
instructions that compose a program. In this mode, comments, intrustions, and labels
on instructions are recognized.

3. Numeric: In this mode, you can specify a sequence of literal integer values. You may
specify one or more labels, thereby marking the address of a constant. Each sequence
of word-sized values can be of any length, and may be expressed in any of the usual
forms (decimal, hexadecimal, binary). For example:

4

.Numeric
0 0b10110001 0x10e3e39a
L5: -12

4. Text: Specify a literal sequence of byte values, where each byte is provided as an ASCII
character. Labels can be provided to specify where a string begins. For example:

.Text
msg1: "The quick brown fox jumps over the dazy log\n"
msg2: "(spoonerism intentional)\n"

5.2 Immediate value modifiers
Many of the RISC-V instructions contain an immediate value—a number that is embedded
directly into a machine-code instruction. For example, the addi instruction adds the contents
of a source register to the immediate value, storing the result in a destination register:

addi t3, s5, 205 # t3 = s5 + 205

The Fivish assembler provides a number of immediate modifiers (some standard, some
Fivish-specific) to aid in specifying those immediate values:

• %lo(x): Given the value x, clear its upper bits, keeping only the low 12 bits as the
immediate value.

• %hi(x): Given the value x, shift it right by 12 bits, keeping only the high 20 bits as
the immediate value.

• %add(x,y): Given the values x and y, produce an immediate value that is the result
of x + y.

• %and(x,y): Given the value x and the integer bitmask y, produce an immediate value
x & y (the bitwise and).

• %pcrel(x): Given the label x, produce the immediate value x - pc (the program
counter), which is the distance, at runtime, between the current instruction and the
labeled element.

• %larel(x,y): Given the labels x and y, produce the immediate value x - y. That is,
produce the distance between elements labeled by x and y.

Most of these modifiers are employed by the pseudo-instructions that handle 32-bit con-
stants (both values and addresses) via two-step instruction sequences. (See the RISC-V
documentation, Section 2.4, on Integer Register-Immediate Instructions, particularly LUI
and AUIPC, as well as Table 20.2, to see how these two-instruction sequences operate and use
the above modifiers.)

5

6 The simulator
Once you have assembled machine code, you may use the system simulator—a program that
performs all the actions of all of the hardware components in a computer system. In doing
so, software meant to run on such a hardware system can instead be run on the simulator,
with that software not being able to tell the difference. Our system simulator comprises the
following components:

• Central Processing Unit (CPU): A single datapath and control that fetches, de-
codes, and executes the instructions of the programs run on the system.

• Memory/peripheral bus: A centralized medium to which all other devices are
connected and through which they communicate.

• Bus controller: The device that provides a map of all of the devices on the bus
(see Section 6.1 for more details). In real systems, this device is also the arbitrator,
controlling the use of the shared medium to avoid collisions.

• Read Only Memory (ROM): Memory units with pre-assigned contents that cannot
be altered. On our simulated system, each ROM is defined by a file in the host (non-
simulated) system. The size and contents of that file are taken as the size and contents
of the ROM. A system may have many ROMs. By convention the first ROM is taken
as the Basic Input/Output System (BIOS). Consequently, the program counter (IP)
in the CPU resets to the starting address of the first ROM on the assumption that it
contians the first instruction for bootstrapping the system.

• Random Access Memory (RAM): A memory unit whose contents have no defined
initial value, and whose contents can be read and written. Typically, there will be only
one RAM device per system, although in principle there could be many.

• Console: A two-dimensional text display. You are unlikely to want to use this device
right away, but later it will be valuable.

• Hard disk: A persistent storage device. Backed by a file on the host (non-simulated)
system, its contents can be read and written through signalling between the CPU and
the device, transferring larger blocks of data. Warning: This device is not yet written
and does not yet appear on the simulated system by default as yet.

6.1 The bus controller
The bus controller provides a window into the placement of bus devices into the physical
address space. Each device has a type (controller (1), ROM (2), RAM (3), etc.), and each
device has physical base (the address of first valid byte to which that device responds) and
limit (the address of first byte after the last valid byte to which the device responds). The
controller provides access to a device table that contains this information for every device
on the bus. The devices are typically laid out in the physical address space as shown in
Figure 1.

6

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

0x00001000

Controller

0x00001ffc

RAM

0x00003000

0x00007000

0x00008000

0x000091a8

ROM

(BIOS)

ROM

(kernel)

0x0000a000

0x0000c350

Console

0x0000e000

0x0000e7800x00000000 0xffffffff

Figure 1: An example placement of devices in the physical address space.

The bus controller is always loaded into the physical address space with a base of 0x00001000—
the address of the first byte in the physical address space. This addres is also the start of
an array of values, where each sequential triplet of words is, respectively, the type, base, and
limit of a bus device. For example, the set of devices shown in Figure 1 would yield the
following device table:

0x00001000: 1
0x00001004: 0x00001000
0x00001008: 0x00001ffc
0x0000100c: 3
0x00001010: 0x00003000
0x00001014: 0x00007000
0x00001018: 2
0x0000101c: 0x00008000
0x00001020: 0x000091a8
0x00001024: 2
0x00001028: 0x0000a000
0x0000102c: 0x0000c350
0x00001030: 4
0x00001034: 0x0000e000
0x00001038: 0x0000e780
0x0000103c: 0
...
0x00001ff8: 0

So, 0x0000100c through 0x00001017 contain three word values. The first, at address
0x0000100c, indicates that this is a RAM device (where 2 would indicate a ROM, and 1
would indicate a bus controller). The second field, at address 0x00001010, indicates that the
base address for the RAM is 0x00003000. Finally, the third field, at 0x00001014, indicates
that the limit of this device is 0x00007000. The next three words, from 0x00001018 to
0x00001023, contain these same three fields for the ROM assumed to contain the BIOS. An
entry whose type field is 0 is an empty entry (e.g., at address 0x0000103c), and indicates
that no more meaningful entries exist beyond this point.

7

6.2 Starting the simulator
To run the simulator, you may provide as many assembled executable files—files produced
by the assembler with the suffix .vmx—as you like.

$./simulate bios.vmx kernel.vmx add-two-numbers.vmx do-nothing.vmx

The simulator will start. First, it will show, as debugging output,3 the list of devices that
are connected to the bus and the address ranges to which each device responds. It also shows
the initial state of the console device. Then, the simulator presents you with a prompt:

[pc = 0x00008000]:

This prompt always shows the current value of the program counter (pc), which is initialized
to the first address of the first ROM (which is assumed to be the BIOS). At this prompt,
you can examine or change any of the system’s state—specifically, any memory location, or
any CPU register. You can also control progression of the CPU’s execution. To see the list
of valid commands, use the help command:

[pc = 0x00008000]: help
Commands:

help
step <number of steps>
until <breakpoint address>
peek <hexidecimal memory address>
peekb <hexidecimal memory address>
peekaround <hexidecimal memory address>
poke <hexidecimal memory address> <word value>
pokeb <hexidecimal memory address> <byte value>
unhalt
showregister <[<register number (0 - 31)] | <register name> | <CSR name>]>
setregister <[<register number (0 - 31)] | <register name> | <CSR name>]> <value>
showregisters [text | graphic]
showconsole [text | graphic]
exit

[pc = 0x00008000]:

Here is a description of each command:

• step n: Execute the next n steps of the program. If n == -1, then run indefinitely.

• until n: Execute instructions until pc == n.

• peek n: Display the word-sized value at address n.

• peekb n: Display the byte-sized value at address n.
3Section 6.3 shows how to increase or decrease the amount of debugging output shown.

8

• peekaround n: Display a group of word-sized values cenetered on address n.

• poke n v: Set the word-sized value at address n to the value v.

• pokeb n v: Set the byte-sized value at address n to the value v.

• unhalt: If the processor mode is halted, clear the halt bit to resume fetch/decode/execution.

• showregister r: Show the value in register r, where r may be expressed as a register
number (13 or x13, following the RISC-V convention) or a register name (e.g., ra, t3).
Note that CSR’s may be shown as well by name, as specified in Section 3 (e.g., pc,
md).

• setregister r v: Set the value in register r to the value v.

• showregisters d: Display all of the registers, either in the current terminal (d == text)
or in its own window (d == graphic).

• showconsole d: Display the contents of the console device, either in the current ter-
minal (d == text) or in its own window (d == graphic).

6.3 Setting the debugging level
The debugging level register (db) controls how much debugging information the simulator
emits. Higher debugging levels (1 or 2) emits information that can help debug the simulator
itself or the code running on it.

[pc = 0x00008000] setregister db 1

The extra debugging output can be eliminated by resetting this register to its default, 0.
The register can also be set to higher values, but any value larger than 1 will currently yield
an erratic collection of output used for debugging the simulator, so I don’t recommend it.

9

	Overview
	The Fivish/RISC-V ISA
	Control and status registers
	Interrupts
	Codes
	Vectoring

	The assembler
	Mode change markers
	Immediate value modifiers

	The simulator
	The bus controller
	Starting the simulator
	Setting the debugging level

