
Systems II — Project 0
Completing a BIOS

1 Overview and motivation
This project will begin your work with Fivish, our (mostly) RISC-V-based assembler and
system simulator. The goal is to get working with these tools and see a small group of sample
assembly programs. The real work, though will be in the BIOS; it is mostly written, but
you will need to complete it.

2 Getting started
2.1 System requirements and options
First, be sure that you have completed the tools installation, with a working Micromamba
environment.

Expect to work significantly on the command-line and with fundamental text/code editors.
Specifically, vim, emacs, Sublime Text, even Notepad++ are reasonable options for editing
code. Maybe VSCode. IDE’s may make assumptions about the kind of software that you’re
trying to write that don’t apply here, so find a good programmer’s editor that allows you to
read, write, and format assemly, C, and scripts.

Getting into your sys2 environment: Remember that you want to be in the habit of
starting a bash shell with your Mamba environment. First:

• macOS/Linux: Open a terminal/console.

• Windows: Then, in the Start menu, type git bash, and then select Run as admin-
istrator. Normally, just running this program as a user, in the usual way, is sufficient,
but we are going to need administrator capabilities during this setup.

Once you are at the bash shell prompt, do the following to enable the creation of
symbolic links:1

$ printf "export MSYS=winsymlinks:nativestrict\n" >> ~/.bash_profile
$ source ~/.bash_profile

1If you don’t know what a symbolic link is, that’s OK, although you can look it up if you’re curious. We
will be using them, so we need them enabled.

1

https://sfkaplan.people.amherst.edu/courses/2025/spring/COSC-275/
https://sfkaplan.people.amherst.edu/courses/2025/spring/COSC-275/documents/tools.pdf

Second, activate your environment:

$ micromamba activate sys2

2.2 Getting Fivish
On whatever system your using, use git to checkout a copy of the assembler and simulator:

(sys2) $ git clone git@gitlab.com:amherst-college/sfkaplan_grp/fivish.git

For this project, we are interested in two directories in this repository: assembler and
simulator. Change into each directory in turn, building the source code:2

(sys2) $ cd fivish/assembler
(sys2) $ javac *.java
(sys2) $ cd ../simulator
(sys2) $ javac -cp jline.jar *.java
(sys2) $ cd ..

You then need to add symbolic links from your local binaries directory to the scripts that
run these tools, like so:

(sys2) $ cd assembler
(sys2) $ ln -s $PWD/f-assemble ~/.local/bin/
(sys2) $ cd ../simulator
(sys2) $ ln -s $PWD/f-simulate ~/.local/bin/
(sys2) $ cd ../..

2.3 Getting the project source
Download and unpack the source files from the command-line like so, and then take a look
at the files.

(sys2) $ curl -L https://bit.ly/cosc-275-25s-p0 -o project-0.tar.xz
(sys2) $ tar -xJvpf project-0.tar.xz
(sys2) $ cd project-0
(sys2) $ ls
bios.asm conditional.asm do-nothing.asm find-max.asm loop.asm

The latter four files are small assembly examples of basic programming constructs that we
will go over in class. The bios.asm file is where you will do your real work.

2When you compile the simulator, you will see a warning about unchecked or unsafe operations; you may
safely ignore this warning.

2

2.4 Assembling and running
As an example, we can use the do-nothing.asm code to see how to use the assembler and
the simulator. First, open the source code in your favorite text editor; you will see that this
little program loads a couple of constants into registers, and then it halts the processor.

To assemble this program, do the following:

(sys2) $ f-assemble do-nothing.asm

You should see the output of the assembler, which shows how each line of code is interpreted
and translated into machine code. The assembler will create a file named do-nothing.vmx
that contains the actual RISC-V machine code. We can now try running this code in the
simulator:

(sys2) $ f-simulate do-nothing.vmx
[...]
[pc = 0x00015000]: step 10

You will see the processor carry out the instructions of the program (which actually takes
fewer than 10 steps, but the halted processor ignores the request for any additional steps).
You can match these steps to what the assembler showed. You can also examine the registers
used to see that they contain the desired values, and then exit the simulator.

[pc = 0x00015018]: showregister a0
a0 = 0x0000000d
[pc = 0x00015018]: showregister a1
a1 = 0x1a2b3c4d
[pc = 0x00015018]: exit

Congratulations! You have used our little system. Now try the other sample programs and
make sure that you see how they work.

3 Your assignment
Your goal with this assignment is to complete, in assembly, the code needed to bootstrap
our simulated system. Much of this BIOS is written, but it lacks one critical portion of its
code that you must fill in. So, to complete this assignment, you must:

1. Grok: Read the code already in bios.asm and grasp, to the greatest extent possible,
what it does and how it does it. I recommend also writing down questions about parts
you don’t fully understand, and then asking about them. As a broad outline, here’s
what the BIOS, when complete, must accomplish:

3

(a) Find the RAM in the physical address space.
(b) Find the second ROM in the physical address space. Both your BIOS and users

of it assume that this second ROM is the kernel.
(c) Copy the kernel (2nd ROM) into main memory (RAM).
(d) Jump to the copied kernel’s first machine code instruction.

2. Complete: The procedure copy_kernel is not written. Given a pointer to the device
table entry for the kernel (the 2nd ROM) in a0, as well as a pointer to the device table
entry for RAM in a0, this procedure needs to copy the contents of that ROM into RAM.
You can write a loop to perform this task or you can use the DMA portal for efficiency.

Notice that you must, for now, use a dummy kernel. Since we have not yet written any
part of a true OS kernel, then any executable image (e.g., do-nothing.vmx, assembled from
the provided do-nothing.asm) will suffice. To run the simulator with both your BIOS and
this dummy program as a “kernel”, do this:

(sys2) $ f-simulate bios.vmx do-nothing.vmx

You will see, when the simulator starts, that the device table has two entries for ROM-type
devices; the first contains bios.vmx, the second do-nothing.vmx. That is, each .vmx file is
turned into a separate ROM on the bus.

4 How to submit your work
For this course, I will create a Google Drive folder that is shared between you, me, and the
TA. Within this folder will be subfolders for each project. For this project, there will be a
project-0 subfolder.

Copy your completed bios.asm file into this subfolder to submit your work.

This assignment is due at 11:59 pm on Sunday, February 9th.

4

	Overview and motivation
	Getting started
	System requirements and options
	Getting Fivish
	Getting the project source
	Assembling and running

	Your assignment
	How to submit your work

